# **GPLUS EDUCATION**

| Dat<br>Tin<br>Mai |                                                                                                 |                                     | BIOLOGY                                                    |
|-------------------|-------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|
|                   | PHOTOSYNTHESIS I                                                                                | N HIGHER P                          | LANTS                                                      |
|                   | Single Correct                                                                                  | Answer Type                         |                                                            |
| 1.                | As compound to a C <sub>3</sub> -plant, how many additional me                                  | olecules of ATP are                 | needed for net production of one                           |
|                   | molecule of hexose sugar by C <sub>4</sub> -plants? a) 2 b) 6                                   | c) 0                                | d) 12                                                      |
| 2.                | Proton gradient is broken down due to                                                           |                                     | ,                                                          |
|                   | a) Movement of electrons across the membrane to s                                               | troma                               |                                                            |
|                   | b) Movement of electrons across the membrane to le                                              |                                     |                                                            |
|                   | c) Movement of proton across the membrane to lum                                                |                                     |                                                            |
| 2                 | d) Movement of proton across the membrane to stro                                               |                                     |                                                            |
| 3.                | Which of the following is a simplified equation of ph                                           | =                                   | ght energy                                                 |
|                   | a) $CO_2 + 2H_2O \xrightarrow{\text{Light energy}} C_5H_{10}O_4 + H_2O + O_2 \uparrow$          | b) $CO_2 + 2H_2O \frac{2H_2}{CH_2}$ | $\xrightarrow{\text{plorophyll}} (CH_2O)_n + O_2 \uparrow$ |
|                   | c) $CO_2 + 2H_2O \xrightarrow{\text{Light energy}} C_3H_6O_3 + CO_2 + O_2 \uparrow$             |                                     |                                                            |
|                   |                                                                                                 | Cl                                  | $\frac{1}{10000000000000000000000000000000000$             |
| 4.                | The membrane of thylakoid is called                                                             | 1) 11                               |                                                            |
|                   | a) Cell membrane                                                                                | b) Fret membran                     |                                                            |
| 5.                | <ul><li>c) Granum membrane</li><li>The enzyme responsible for primary carboxylation i</li></ul> | d) Thylakoid men                    | norane                                                     |
| ٥.                | a) Hexokinase                                                                                   | b) Succinic dehyd                   | rogenase                                                   |
|                   | c) Pyruvate carboxylase                                                                         | d) RuBP carboxyl                    | _                                                          |
| 6.                | The law of limiting factors was proposed with partic                                            |                                     |                                                            |
|                   | scientise, who proposed this law?                                                               | 1                                   | , , , , , , , , , , , , , , , , , , ,                      |
|                   | a) Calvin b) Weismann                                                                           | c) Emerson                          | d) Blackman                                                |
| 7.                | The synthesis of one molecule of glucose during Calv                                            | vin cycle requires                  |                                                            |
|                   | a) 12 molecules of ATP and 18 molecules of NADPH                                                | 2                                   |                                                            |
|                   | b) 6 molecules of ATP and 12 molecules of NADPH <sub>2</sub>                                    |                                     |                                                            |
|                   | c) 18 molecules of ATP and 12 molecules of NADPH                                                | 2                                   |                                                            |
| 0                 | d) 12 molecules each of ATP and NADPH <sub>2</sub>                                              |                                     |                                                            |
| 8.                | The enzymatic reactions incorporate $CO_2$ into the pl                                          | <del>-</del>                        | _                                                          |
| 9.                | a) Stroma b) Stroma lamella In CAM-plants, carbon dioxide acceptor is                           | c) Grana                            | d) Both (a) and (b)                                        |
| ٦.                | a) RuBP b) PEP                                                                                  | c) OAA                              | d) PGA                                                     |
| 10.               | PEP carboxylase                                                                                 | ej ermi                             | a) i dii                                                   |
|                   | I. is involved in atleast some CO <sub>2</sub> fixation in both C <sub>3</sub>                  | and C <sub>4</sub> -plants          |                                                            |
|                   | II. Catalyses the reaction of fixing CO <sub>2</sub> into pyruvic a                             |                                     | h cells                                                    |
|                   | III. is capable of fixing $\mathrm{CO}_2$ more efficiently at lower                             | atmospheric CO <sub>2</sub> co      | oncentration than RuBP                                     |
|                   | carboxylase                                                                                     |                                     |                                                            |
|                   | Select the correct option                                                                       |                                     |                                                            |
|                   | a) I and II b) II and III                                                                       | c) I, II and III                    | d) Only III                                                |
| 11.               | Which factor is not limiting in normal condition for                                            | = =                                 | 4) Chlamanh 11                                             |
| 12                | a) Air b) Carbon dioxide PS is made up of which of the following?                               | c) Water                            | d) Chlorophyll                                             |

- a) Reaction centre
- c) Both (a) and (b)

- b) Antenna molecule
- d) Reaction centre and H2O
- 13. In higher plants, the shape of the chloroplast is
  - a) Discoid
- b) Cup-shaped
- c) Girdle-shaped
- d) Reticulate

14. Identify the correct combination of the following

| substrate  | enzyme      | Product             |
|------------|-------------|---------------------|
| I.         | PEP         | C <sub>4</sub> acid |
| Phosphoen  | carboxylase |                     |
| -ol        |             |                     |
| pyruvate   |             |                     |
| II. Malate | Malic       | C <sub>4</sub> acid |
|            | enzyme      |                     |
| III. RuBP  | Ribulose 5- | C <sub>3</sub> acid |
|            | phosphate   |                     |
|            | kinase      |                     |
| IV.        | Pyruvate    | C <sub>3</sub> acid |
| Pyruvate   | dikinase    |                     |

- a) III and IV
- b) I and II
- c) II and III
- d) I and IV

- 15. Cyclic photophosphorylation produces
  - a) NADPH
- b) ATP

- c)  $ATP + NADPH_2$
- d)  $ATP + NADPH_2 + O_2$
- 16. Phenomenon which converts light energy into chemical energy is
  - a) Respiration
- b) Photosynthesis
- c) Transpiration
- d) None of these
- 17. In the given chart of photophosphorylation, What does 'A' represent?



a) PC

b) FRS

c) PQ

d) Cyt  $-a_3$ 

- 18. In photosystem, antennae includes all pigments except
  - a) Chlorophyll-a
- b) Chlorophyll-b
- c) Carotenoids
- d) Xanthophyll

- 19. I. Tomato
  - II. Black pepper
  - III. Mango

From the above option choose the correct answer in respect of green house crops

- a) I and III
- b) III and II
- c) I, II and III
- d) I and II

- 20. Plastocyanin contains
  - a) Copper
- b) Iron

- c) Calcium
- d) potassium
- 21. The two pigment system theory of photosynthesis was proposed by
  - a) Blackman
- b) Hill

- c) Emerson
- d) Arnon
- 22. Which one of the following is not true about the light reactions of photosynthesis?
- a) Light energy provides energy for the photolysis of water through excitation of the reaction centre of PS-

II

|     |                                                                  |                                    | <b>Gplus Education</b>             |
|-----|------------------------------------------------------------------|------------------------------------|------------------------------------|
|     | b) The flow of electrons from water to NAD                       | P in non-cyclic electron transpor  | t produces one ATP                 |
|     | c) Reactions of the two photosystems are no                      | eeded for the reduction of NADP    |                                    |
|     | d) $P_{680}$ and $P_{700}$ are the reaction centres of $P_{680}$ | S-I and PS-II respectively         |                                    |
| 23. | By which plant pigment maximum absorption                        | on of radiation takes place in the | blue and red regions of            |
|     | absorption spectrum?                                             |                                    |                                    |
|     | a) Chlorophyll- <i>a</i> b) Chlorophyll- <i>b</i>                | c) Xanthophyll                     | d) Carotenoid                      |
| 24. | Factors affecting photosynthesis are                             |                                    |                                    |
|     | I. number and size of leaves                                     |                                    |                                    |
|     | II. age and orientation of leaves                                |                                    |                                    |
|     | III. amount of chlorophyll                                       |                                    |                                    |
|     | IV. amount of O <sub>2</sub> and CO <sub>2</sub>                 |                                    |                                    |
|     | Select the correct option                                        |                                    |                                    |
|     | a) I, II and IV b) II, IV and V                                  | c) IV, V and I                     | d) I, II, III and IV               |
| 25. | In an experiment, a leaf was partially covered                   | ed with black paper, and other o   | ne was exposed to light. On        |
|     | testing these leaves for starch, in the presen                   | ice of sunlight, on may conclude   | that photosynthesis had            |
|     | occurred in                                                      |                                    |                                    |
|     | a) Green part of leaves                                          | b) Black paper covered             | d part of leaves                   |
|     | c) Both (a) and (b)                                              | d) None of the above               |                                    |
| 26. | I. It is the characteristic of C <sub>4</sub> -plants            |                                    |                                    |
|     | II. It is the characteristic of C <sub>3</sub> -plants           |                                    |                                    |
|     | III. It occurs in chloroplast                                    |                                    |                                    |
|     | IV. It occurs in day time                                        |                                    |                                    |
|     | V. It occurs in night                                            | str -                              |                                    |
|     | Select the correct options in relation to pho                    | torespiration                      |                                    |
|     | Correct option Incorrect option                                  | ы ш ш п                            | 7                                  |
|     | a) I, IV II, III, IV                                             | b) II, III, IV I, V                |                                    |
| 27  | c) I, II, III IV, V First reaction in photosynthesis is          | d) IV, V I, II                     | 1, 111                             |
| ۷/, | a) Photolysis of water                                           | b) Excitation of chloro            | nhyll moloculo                     |
|     | c) Formation of APT                                              | d) Fixation of CO <sub>2</sub>     | phyn molecule                      |
| 28  | Kranz anatomy is a morphological diversity                       | · -                                |                                    |
| 20. | a) $C_3$ -plants b) $C_4$ -plants                                | c) Both (a) and (b)                | d) CAM-plants                      |
| 29. | Which of the following is concerned with ca                      |                                    | ay ormin plants                    |
|     | a) Krebs cycle b) Calvin cycle                                   | c) Ornithine cycle                 | d) Glycolysis                      |
| 30. | Hill reaction occurs in                                          |                                    |                                    |
|     | a) High altitude plants                                          | b) Total darkness                  |                                    |
|     | c) Absence of water                                              | d) Presence of ferricya            | nnide                              |
| 31. | Rubisco enzyme is absent in                                      |                                    |                                    |
|     | a) Mesophyll cell b) Bundle sheath                               | cell c) C <sub>3</sub> -plants     | d) C <sub>4</sub> -plants          |
| 32. | During the experiment in laboratory, the th                      | ylakoid is some how punctured s    | so that the interior of the        |
|     | thylakoid is no longer separated from strom                      | na. This damage will have the dir  | ection effect on                   |
|     | a) ATP formation                                                 | b) Absorption of light             |                                    |
|     | c) Flow of electrons from PS-I to PS-II                          | d) All of the above                |                                    |
| 33. | The graph below shows the relation between                       |                                    |                                    |
|     | dioxide by the leaves of a plant. Why is mos                     | t carbon dioxide given off when t  | the light intensity is zero units? |
|     |                                                                  |                                    |                                    |



- a) Because it is just the start of the experiment
- b) Only respiration is taking place at this intensity of light
- c) Only photosynthesis is taking place at this intensity of light
- d) The rate of photosynthesis is equivalent to the rate of respiration
- 34. Cyclic photophosphorylation results only in the
  - a) Formation of ATP

b) Formation of NADP<sup>+</sup> + H<sup>+</sup> and ATP

c) Formation of  $NAD^+ + H^+$ 

- d) Formation of ADP + Pi
- 35. I. H<sub>2</sub>S not H<sub>2</sub>O is involved in photosynthesis of sulphur bacteria
  - II. ATP is produced during light reaction via chemiosmosis
  - III. Absence of light leads to the stoppage of photosynthesis
  - IV. Calvin cycle occurs in grana

Select the correct option

- a) II, III and IV
- b) I, III and IV
- c) I, II and IV
- d) I, II and III
- 36. Under normal condition, which one of the following is a major limiting factor?
  - a) Light
- b) CO<sub>2</sub>

- c) Temperature
- d) Chlorophyll
- 37. Which one is essential for the respiration as well as photosynthesis?
  - a) Rubisco
- b) Plastocyanin
- c) Ubiquinone
- d) Cytochrome

- 38. Light Harvesting Complex (LHC) is
  - a) One molecule of chlorophyll-a

- b) Very few molecule of chlorophyll-a
- c) Hundereds of pigment molecules bound to proteins
- d) Chlorophyll-a + chlorophyll-c + protein + DNA
- 39. Which of the following represents the correct molecular formula of chlorophyll-*b*?
  - a)  $C_{55}H_{72}O_6N_4Mg$
- b)  $C_{55}H_{72}O_5N_4Mg$
- c)  $C_{55}H_{72}O_4N_4Mg$
- d)  $C_{55}H_{70}O_6N_4Mg$

- 40. In  $C_4$ -plants, the bundle sheath cells
  - a) Have thin walls to facilitate gaseous exchange
- b) Have large intercellular spaces

c) Are rich in PEP carboxylase

- d) Have a high density of chloroplasts
- 41. The following (I-IV) are the main steps of chemosynthetic ATP synthesis in the light reaction. Arrange them in correct order
  - I. H<sup>+</sup> concentration gradient established
  - II. H<sup>+</sup> diffuses through ATP synthetase
  - III. Carriers use energy from electrons to move H<sup>+</sup> across the membrane
  - IV. Electrons from PS-II pass along electron transport chain
  - V. Light excites electrons in PS-II
  - VI. Energy of H<sup>+</sup> flow is used by ATP synthetase to make ATP
  - a) I, II, III, IV, V, IV
- b) II, IV, V, III, II, VI
- c) V, IV, III, I, II, VI
- d) V, VI, III, IV, II, I

- 42. What is the wavelength of radiations in visible sectrum?
  - a) 400-700 nm
- b) 400-800 nm
- c) 390-760 nm
- d) 760-390 nm

- 43. Which of the following is not related to photorespiration?
- a) Lysosome
- b) Chloroplast
- c) Peroxisome
- d) Mitochondria

| 44. | The internal factors tha                                                                                                 | at affects photosynthes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | is of plant depends on the  | •                                          |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|--|--|--|
|     | a) Morphological predi                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Genetic predispo         | osition                                    |  |  |  |
|     | c) Temperature                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) Environment pre          |                                            |  |  |  |
| 45. | -                                                                                                                        | formed from 12 water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | molecules during non-cycl   | •                                          |  |  |  |
|     | a) 12                                                                                                                    | b) 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c) 36                       | d) 48                                      |  |  |  |
| 46. |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | cules. How many H <sup>+</sup> are formed? |  |  |  |
|     | a) 24 H <sup>+</sup>                                                                                                     | b) 36 H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) 12 H <sup>+</sup>        | d) 32 H <sup>+</sup>                       |  |  |  |
| 47. | Maximum photosynthe                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                           |                                            |  |  |  |
|     | a) Red light                                                                                                             | b) Blue light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) Green light              | d) Violet light                            |  |  |  |
| 48. | I. Initial CO <sub>2</sub> acceptor                                                                                      | ~) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·) ··········               | .,                                         |  |  |  |
| 101 | II. Extent of photorespi                                                                                                 | ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                            |  |  |  |
|     | III. Enzyme catalysing                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
|     | IV. Presence of Calvin of                                                                                                | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                            |  |  |  |
|     | V. Leaf anatomy                                                                                                          | ,, , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                                            |  |  |  |
|     | Which one does not dif                                                                                                   | fer in a Co and Ca-plant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ts?                         |                                            |  |  |  |
|     | a) I and V                                                                                                               | b) Only IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) II and III               | d) Only II                                 |  |  |  |
| 49  | Energy transfer in pho                                                                                                   | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c) ii ana iii               | uj olily li                                |  |  |  |
| 17. | a) Phycoerythrin→ phy                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | →chlorophyll-a              |                                            |  |  |  |
|     | b) Chlorophyll-b →card                                                                                                   | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                            |  |  |  |
|     | c) Phycocyanin→phyco                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ·                         |                                            |  |  |  |
|     | d) Chlorophyll-b→ card                                                                                                   | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                            |  |  |  |
| 50  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | remorophyn a                |                                            |  |  |  |
| 50. | What is true for photosynthesis?                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
|     | =                                                                                                                        | <ul><li>a) Carbon dioxide is oxidised and water is reduced</li><li>b) Carbon dioxide is reduced and water is oxidised</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
|     | c) Both carbon dioxide                                                                                                   | The second secon | 1.48                        |                                            |  |  |  |
|     | d) Both carbon dioxide                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
| 51  | =                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
| 31. | Which of the following statement is false in case of $(C_4$ -plant)?<br>a) $CO_2$ acceptor is RuBisCo in mesosphyll cell |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
|     |                                                                                                                          | b) Carboxylation occurs in mesophyll cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                            |  |  |  |
|     | c) Leaves have two cel                                                                                                   | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                            |  |  |  |
|     | d) Mesophyll cells lack                                                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                            |  |  |  |
| 52  | Chlorophyll in chlorop                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
| 32. | a) Grana                                                                                                                 | b) Pyrenoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) Stroma                   | d) Both (a) and (b)                        |  |  |  |
| 53  | Which photosystem is                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | a) both (a) and (b)                        |  |  |  |
| 55. | a) PS-II                                                                                                                 | mivorved in cyclic photo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) PS-I                     |                                            |  |  |  |
|     | c) Xanthophyll and PS-                                                                                                   | II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) Xanthophyll and          | DC_I                                       |  |  |  |
| 54  |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roplast and mitochondria i  |                                            |  |  |  |
| J4. | a) Relay pump theory                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Cholodny-Went's          | -                                          |  |  |  |
|     | c) Chemiosmotic theor                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Munch's mass-flo         |                                            |  |  |  |
| 55  |                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | ynthesis is identical because              |  |  |  |
| JJ. | chlorophyll- $a$                                                                                                         | i chiorophyn- $a$ and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e action spectrum of photos | ynthesis is identical because              |  |  |  |
|     | a) Absorbs the maximu                                                                                                    | ım light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) Absorbs the min          | imum light                                 |  |  |  |
|     | c) Absorbs the red and                                                                                                   | blue light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d) Is found most ab         | undantly                                   |  |  |  |
| 56. | Which would do maxin                                                                                                     | num harm to a tree?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                            |  |  |  |
|     | a) Loss of half of its bra                                                                                               | anches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) Loss of all its bar      | ·k                                         |  |  |  |
|     | c) Loss of all its leaves                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Loss of half of its      | leaves                                     |  |  |  |
| 57. | Tyravace   Titt   TE                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |  |  |  |
|     | Identify- <i>y</i> in the given                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           |                                            |  |  |  |
|     | a) Phosphopyruvate di                                                                                                    | kinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) Phosphopyruvat           | e monokinase                               |  |  |  |

|     | c) Phosphopyruvate dik               | tinase                                                                                                                        | d) Phosphopyruvate de                 | ehydrogenase                               |  |  |
|-----|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|--|--|
| 58. | A wastage process is                 |                                                                                                                               |                                       |                                            |  |  |
|     | a) Respiration                       | b) Photosynthesis                                                                                                             | c) Photorespiration                   | d) Movement                                |  |  |
| 59. | How many molecules of                | glycine is required to releas                                                                                                 | se one CO <sub>2</sub> molecule in pl | notorespiration?                           |  |  |
|     | a) One                               | b) Two                                                                                                                        | c) Three                              | d) Four                                    |  |  |
| 60. | Choose the correct state             | ement.                                                                                                                        |                                       |                                            |  |  |
|     | a) The C <sub>4</sub> -plants do not | have RUBISCO                                                                                                                  |                                       |                                            |  |  |
|     | b) Carboxylation of RuB              | P leads to the formation of I                                                                                                 | PGA and phosphoglycolat               | e                                          |  |  |
|     | c) Carboxylation of pho              | sphoenol pyruvate results ii                                                                                                  | n the formation of $C_4$ -plar        | nts                                        |  |  |
|     | d) Decarboxylation of C              | <sub>4</sub> -acids occur in the mesoph                                                                                       | yll cells                             |                                            |  |  |
| 61. | Conditions helpful in ph             | otorespiration are                                                                                                            |                                       |                                            |  |  |
|     | a) More oxygen and less              | s carbon dioxide                                                                                                              | b) Less oxygen and mo                 | re carbon dioxide                          |  |  |
|     | c) More temperature an               | nd less oxygen                                                                                                                | d) More humidity and l                | ess temperature                            |  |  |
| 62. | Which of the following i             | s/are the raw material for p                                                                                                  | hotosynthesis?                        |                                            |  |  |
|     | $I.H_2O$ $II.CO_2$                   |                                                                                                                               |                                       |                                            |  |  |
|     | III. Light IV. Chlorophy             | 7]]                                                                                                                           |                                       |                                            |  |  |
|     | Choose the correct option            |                                                                                                                               |                                       |                                            |  |  |
|     | a) II, III and IV                    | b) I and IV                                                                                                                   | c) I, II and III                      | d) I, II, III and IV                       |  |  |
| 63. | The special structure pr             | esent in C <sub>4</sub> -plants in                                                                                            |                                       | •                                          |  |  |
|     | a) Thin cuticle                      |                                                                                                                               | b) Multi-layered epider               | mis                                        |  |  |
|     | c) Kranz type body                   |                                                                                                                               | d) One-layered epidern                | nis                                        |  |  |
| 64. | In which of the followin             | g form glucose is usually sto                                                                                                 | red in plants?                        |                                            |  |  |
|     | a) Lipid                             | b) Carbohydrates                                                                                                              | c) Protein                            | d) Starch                                  |  |  |
| 65. | A student sets up an exp             | periment on photosynthesis                                                                                                    | as follow : He takes soda             | water in a glass tumbler and               |  |  |
|     | add a chlorophyll extrac             | cts into the contents and kee                                                                                                 | ps the tumbler exposed s              | unlight hoping that he has                 |  |  |
|     | provided necessary ingi              | provided necessary ingredient for photosynthesis to proceed (viz, CO <sub>2</sub> , H <sub>2</sub> O, chlorophyll and light). |                                       |                                            |  |  |
|     | What do you think what               | will happen after, say few h                                                                                                  | ours of exposure of light             | ?                                          |  |  |
|     | a) Photosynthesis will t             | ake place and glucose will                                                                                                    | b) Photosynthesis will                | take place and starch will be              |  |  |
|     | produced                             |                                                                                                                               | produced which will                   | turn the mixture turbid                    |  |  |
|     | Photosynthesis will r                | ot take place because CO <sub>2</sub>                                                                                         | d) Photosynthesis will                | not take place because intac               |  |  |
|     | c) dissolves in soda wat             | er escapes into the                                                                                                           | chloroplasts are nee                  | ded for the process                        |  |  |
|     | atmosphere                           |                                                                                                                               |                                       |                                            |  |  |
| 66. |                                      | sation point, which of the fo                                                                                                 |                                       |                                            |  |  |
|     | ai                                   | of $C_3$ and $C_4$ - plants are                                                                                               | nı                                    | s of C <sub>3</sub> - plant is higher than |  |  |
|     | equal                                |                                                                                                                               | C <sub>4</sub> -plants                |                                            |  |  |
|     | C) -                                 | $_{ m c}$ of $ m C_4$ -plant is higher than $ m C$                                                                            | <sub>3</sub> -d)                      |                                            |  |  |
|     | plants                               |                                                                                                                               |                                       |                                            |  |  |
| 67. | Light energy in photosy              |                                                                                                                               |                                       |                                            |  |  |
|     | a) H <sub>2</sub> O converted into H | _                                                                                                                             | b) ADP converted into                 | ATP                                        |  |  |
|     | c) ATP converted into A              |                                                                                                                               | d) None of the above                  | 1                                          |  |  |
| 68. |                                      | the given diagram of z-sche                                                                                                   | me of light reaction and c            | hoose the correct option                   |  |  |
|     | accordingly D                        |                                                                                                                               |                                       |                                            |  |  |
|     |                                      | DPH                                                                                                                           |                                       |                                            |  |  |
|     | ADP+iP ATP NA                        | DP <sup>+</sup>                                                                                                               |                                       |                                            |  |  |
|     | В                                    |                                                                                                                               |                                       |                                            |  |  |
|     |                                      |                                                                                                                               |                                       |                                            |  |  |
|     | THC                                  |                                                                                                                               |                                       |                                            |  |  |

|     | a) A-e <sup>-</sup> acceptor, B-ETS, C-PS-II, D-PS-I                                                            | b) A- $e^-$ acceptor, B-ETS,                         |                                                                          |  |
|-----|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--|
|     | c) A-ETS, B-e <sup>-</sup> acceptor, C-PS-I, D-PS-II                                                            | d) A-ETS, B-e <sup>-</sup> acceptor, C-PS-II, D-PS-I |                                                                          |  |
| 69. | PEP + $CO_2$ + $H_2O \xrightarrow{x} Oxaloacetic acid + H_3PO_4Identify X$                                      |                                                      |                                                                          |  |
|     | a) Ligase b) Oxidoreductase                                                                                     | c) PEP carboxylase                                   | d) Lyase                                                                 |  |
| 70. | Stroma lamellae membrane lacks                                                                                  | ·                                                    |                                                                          |  |
|     | I. PS-II                                                                                                        |                                                      |                                                                          |  |
|     | II. NADP reductase                                                                                              |                                                      |                                                                          |  |
|     | III. non-cyclic photophosphorylation                                                                            |                                                      |                                                                          |  |
|     | Select the correct option                                                                                       |                                                      |                                                                          |  |
|     | a) I and II b) II and III                                                                                       | c) III and I                                         | d) I, II and III                                                         |  |
| 71. | RUBISCO stands for                                                                                              | ,                                                    |                                                                          |  |
|     | a) Ribulosebisphosphate carboxylase oxygenase                                                                   |                                                      |                                                                          |  |
|     | b) Ribulose phosphate carboxylase oxygenase                                                                     |                                                      |                                                                          |  |
|     | c) Ribulose phosphate carboxylic oxygenase                                                                      |                                                      |                                                                          |  |
|     | d) None of the above                                                                                            |                                                      |                                                                          |  |
| 72. | In chloroplasts, chlorophyll is present in the                                                                  |                                                      |                                                                          |  |
|     | a) Outer membrane b) Inner membrane                                                                             | c) Thylakoids                                        | d) stroma                                                                |  |
| 73. | DCMC                                                                                                            |                                                      |                                                                          |  |
|     | a) Inhibits PS-I                                                                                                |                                                      |                                                                          |  |
|     | b) Inhibits PS-II                                                                                               |                                                      |                                                                          |  |
|     | c) Destroy chloroplast                                                                                          |                                                      |                                                                          |  |
|     | d) Inhibits oxidative phosphorylation                                                                           |                                                      |                                                                          |  |
| 74. | Malic acid (4-C) is produced in which plant withou                                                              | t Kranz anatomy?                                     |                                                                          |  |
|     | a) Bryophyllum b) Kalanchoe                                                                                     | c) <i>Opuntia</i>                                    | d) All of these                                                          |  |
| 75. | . What is the advantage of light reactions producing ATP and NADPH $_{\mathrm{2}}$ on stromal side of thylakoid |                                                      |                                                                          |  |
|     | membrane?                                                                                                       |                                                      |                                                                          |  |
|     | a) Calvin cycle consumes ATP and NADPH <sub>2</sub> from st                                                     | roma                                                 |                                                                          |  |
|     | b) Light reaction occurs in stroma                                                                              |                                                      |                                                                          |  |
|     | c) Dark reaction occurs in grana need ATP + NADF                                                                | $^{ m PH}_2$                                         |                                                                          |  |
|     | d) CO <sub>2</sub> is produced in stroma                                                                        | ,                                                    |                                                                          |  |
| 76. | Generally, plants adapted to dry tropical conditions                                                            |                                                      | D C 4                                                                    |  |
| 77  | a) C <sub>2</sub> pathway b) C <sub>3</sub> pathway                                                             | c) C <sub>5</sub> pathway                            | d) C <sub>4</sub> pathway                                                |  |
| //. | Correct sequence of rate of photosynthesis in differ                                                            |                                                      | d) Cusan > Dad > Dlua                                                    |  |
| 70  | a) Red > Blue > Green  During the light reaction the water collis into                                          | c) Green > Blue > Red                                | d) Green > Red > Blue                                                    |  |
| 70. | During the light reaction, the water splits into                                                                | 2011 <sup>1</sup> 2 2 1 .                            | n 1                                                                      |  |
|     | a) $H^+$ , $O_2$ electrons b) $H_2$ , $O_2$ electrons                                                           | c) $2H^+, \frac{1}{2}O_2$ 2 electrons                | d) $\frac{1}{2}$ H <sub>2</sub> , $\frac{1}{2}$ U <sub>2</sub> electrons |  |
| 79. | Adenosine diphosphate contains                                                                                  |                                                      |                                                                          |  |
|     | a) One high energy bonds                                                                                        | b) Two high energy bond                              |                                                                          |  |
|     | c) Three high energy bonds                                                                                      | d) Four high energy bond                             | ls                                                                       |  |
| 80. | The thylakoids are aggregated to form stalks of dis                                                             |                                                      |                                                                          |  |
|     | a) Stroma                                                                                                       | b) Grana                                             |                                                                          |  |
| 0.1 | c) Stroma thylakoids                                                                                            | d) Intergranal thylakoids                            |                                                                          |  |
| 81. | Which hypothesis best explains the synthesis of AT                                                              |                                                      |                                                                          |  |
|     | a) Chemosynthetic hypothesis                                                                                    | b) Chemiosmotic hypothe                              |                                                                          |  |
| റാ  | c) Potential gradient hypothesis                                                                                | d) Redox gradient hypoth                             | nesis                                                                    |  |
| σZ. | In dark cycle, one molecule of glucose formation ne                                                             |                                                      | I                                                                        |  |
|     | a) 12 ATP and 12 NADPH<br>c) 16 ATP and 12 NADPH                                                                | b) 14 ATP and 12 NADPF<br>d) 18 ATP and 12 NADPF     |                                                                          |  |
|     | CLIOAIF AUU 14 NADFA                                                                                            | u i io a ir anu iz Nadri                             | ı                                                                        |  |

|     |                                                                                |                                           |                                 | -                                 |
|-----|--------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------------------|
| 83. | • •                                                                            | c pigments in the plants ar               |                                 | la la va cua la cual d            |
|     | a) Chlorophyll- <i>a</i> and chl                                               |                                           | b) Chlorophyll-a and c          |                                   |
| 0.4 | c) Chlorophyll- <i>b</i> and chl                                               |                                           | d) Chlorophyll- <i>b</i> and o  | - ·                               |
| 84. | _                                                                              |                                           | _                               | carbon dioxide is taken by        |
|     | ~ -                                                                            | t radioactive C <sup>14</sup> is seen, ir | -                               |                                   |
|     | a) PGAL                                                                        | b) PEP                                    | c) RMP                          | d) PGA                            |
| 85. | Example of water solubl                                                        |                                           |                                 |                                   |
|     | a) Chlorophyll- $\alpha$                                                       | b) Chlorophyll- <i>b</i>                  | c) Anthocyanin                  | d) xanthophyll                    |
| 86. | PS-I and PS-II were disco                                                      | overed by                                 |                                 |                                   |
|     | a) Robert Emerson                                                              | b) Blackman                               | c) Robert Mayer                 | d) Arnon                          |
| 87. | Photorespiration is also                                                       | called                                    |                                 |                                   |
|     | I. Glycolate pathway                                                           |                                           |                                 |                                   |
|     | II. C <sub>3</sub> -cycle                                                      |                                           |                                 |                                   |
|     | III. Oxidative photosynth                                                      | ietic carbon cycle                        |                                 |                                   |
|     | Select the correct option                                                      | -<br>L                                    |                                 |                                   |
|     | a) I and II                                                                    | b) II and III                             | c) III and I                    | d) I, II and III                  |
| 88. | 'Hatch and Slack' cycle is                                                     |                                           | ,                               | ,                                 |
|     | a) C <sub>4</sub> -plants                                                      | b) C <sub>3</sub> -plants                 | c) Both (a) and (b)             | d) None of these                  |
| 89  |                                                                                | · · ·                                     |                                 | otosynthetic mechanism in         |
| 07. | plants?                                                                        | tatements is true with reg                | ard to light reaction of ph     | otosynthetic mechanism m          |
|     | Chlorophyll a occure                                                           | with neak absorption at 6                 | 90 nm in nhoto cyctom I         | and at 700 nm in photo system     |
|     | a) 11                                                                          | with peak absorption at o                 | oo iiii iii piloto system-ra    | and at 700 mm in photo system     |
|     | h) Magnagium and gadiu                                                         | um iama ana agas siatad vuit              | h whatalwaia af watau wal       | a aula a                          |
|     | b) Magnesium and sodium ions are associated with photolysis of water molecules |                                           |                                 |                                   |
|     |                                                                                | cyclic photophosphorylation               |                                 |                                   |
|     | •                                                                              | are both involved in non-                 |                                 | ion                               |
| 90. | =                                                                              | radient or solar energy int               |                                 |                                   |
|     | a) Physical energy                                                             | b) Latent energy                          |                                 | d) Oxidation energy               |
| 91. |                                                                                | molecule in light reaction                |                                 |                                   |
|     | a) 2 electrons and 4 pro                                                       |                                           | b) 4 electrons and 4 pr         |                                   |
|     | c) 4 electrons and 3 pro                                                       |                                           | d) 2 electrons and 2 pr         |                                   |
| 92. | Which of the following is                                                      | s the first compound that a               | accepts carbon dioxide du       | ring dark phase of                |
|     | photosynthesis?                                                                |                                           |                                 |                                   |
|     | a) NADP                                                                        | b) RuBP                                   | c) Ferredoxin                   | d) Cytochrome                     |
| 93. | In a CAM-plant, the conc                                                       | entration of organic acid                 |                                 |                                   |
|     | a) Increases during the                                                        | day                                       | b) Decreases or increa          | ses during the day                |
|     | c) Increases during nigh                                                       | t                                         | d) Decreases during a           | ny time                           |
| 94. | If photosynthesising, gre                                                      | en algae are provided wit                 | $h$ $CO_2$ labelled with an iso | tope of oxygen $(0^{18})$ , later |
|     |                                                                                | of the following compoun                  |                                 |                                   |
|     | a) PGA                                                                         | b) RuBP                                   | c) Glucose                      | d) O <sub>2</sub>                 |
| 95. |                                                                                | •                                         | •                               | on of seeds of some species?      |
|     | a) P <sub>fr</sub> from                                                        | b) P <sub>r</sub> from                    | c) Both (a) and (b)             | d) None of these                  |
| 96  | Solarisation is                                                                | b) I <sub>I</sub> nom                     | ej Both (a) ana (b)             | a) None of those                  |
| 70. | a) Formation of chlorop                                                        | hvll                                      | b) Destruction of chlor         | conhyll                           |
|     | c) Utilization of sunlight                                                     | -                                         | d) Effects of solar light       |                                   |
| 07  |                                                                                |                                           | uj Liiects di Solai ilgili      |                                   |
| 97. | 11 7 0                                                                         | mode of GO <sub>2</sub> Haddolf III       |                                 |                                   |
|     | I. dicots                                                                      |                                           |                                 |                                   |
|     | II. pteridophytes                                                              |                                           |                                 |                                   |
|     | III. monocots                                                                  |                                           |                                 |                                   |
|     | Select the correct option                                                      | -                                         |                                 |                                   |

|     |                                                                                          |                               |                                         | <b>Gplus Education</b>            |
|-----|------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|-----------------------------------|
|     | a) I and II                                                                              | b) I and III                  | c) II and II                            | d) I, II and III                  |
| 98. | Carboxylation (C <sub>3</sub> -cycle)                                                    |                               |                                         |                                   |
|     | a) Carboxylase                                                                           | b) RuBP carboxylase           | c) RuBP oxygenase                       | d) Both (b) and (c)               |
| 99. | The radio between 2-carb oxidation cycle is                                              | oon and 3-carbon interme      | diates having – NH <sub>2</sub> group f | ormed in photosynthetic           |
|     | a) 1:1                                                                                   | b) 2:1                        | c) 3:2                                  | d) 3:4                            |
| 100 | . In which one of the follow                                                             | ving nitrogen is not a cons   | tituent?                                |                                   |
|     | a) Invertase                                                                             | b) Pepsin                     | c) Idioblast                            | d) Bacteriochlorophyll            |
| 101 | . If a chemical process is af                                                            | fected by more than one f     | actors then its rate will be d          | letermined by                     |
|     | a) Two closely related fac                                                               | ctors                         |                                         |                                   |
|     | b) Only one factor, which                                                                | is close to its minimal value | ue                                      |                                   |
|     | c) Only one factor, which                                                                | is close to its maximum va    | alue                                    |                                   |
|     | d) Only one factor, which                                                                | is close to its appropriate   | value                                   |                                   |
| 102 | . I. Temperature                                                                         |                               |                                         |                                   |
|     | II. CO <sub>2</sub> concentration                                                        |                               |                                         |                                   |
|     | III. Chlorophyll arrangem                                                                | ent                           |                                         |                                   |
|     | IV. Water                                                                                |                               |                                         |                                   |
|     | Among the given factors,                                                                 | identify the external facto   | rs that affects the rate of ph          | notosynthesis and correct         |
|     | option accordingly                                                                       |                               |                                         |                                   |
|     | a) I, II and IV                                                                          | b) I, II and III              | c) II, III and IV                       | d) I, III and IV                  |
| 103 | . Which activity is perform                                                              | ed by PS-I in light reaction  | n?                                      |                                   |
|     | a) Reduction of NADPH                                                                    |                               | b) Reduction of NADP+                   |                                   |
|     | c) Oxidation of NADP <sup>+</sup>                                                        | - M                           | d) Oxidation of NAD                     |                                   |
| 104 | $C_4$ pathway for $CO_2$ -fixati                                                         | on was proposed by            |                                         |                                   |
|     | a) Benson and associates                                                                 |                               | b) Arnon and associates                 |                                   |
|     | c) Rouhani et <i>al.,</i>                                                                |                               | d) Hatch et <i>al.,</i>                 |                                   |
| 105 | . A scientist disrupted the                                                              | chloroplast and separated     | the stroma from lamella. F              | or fixing ${ m CO_2}$ he supplied |
|     | stroma with                                                                              | JPLUS EDUI                    | LATION                                  |                                   |
|     | I. ATP                                                                                   |                               |                                         |                                   |
|     | II. NADPH                                                                                |                               |                                         |                                   |
|     | III. Glucose                                                                             |                               |                                         |                                   |
|     | Select the correct option                                                                |                               |                                         |                                   |
|     | a) I and III                                                                             | b) III and II                 | c) I and II                             | d) I, II and III                  |
| 106 | . CAM helps the plants in                                                                |                               |                                         |                                   |
|     | a) Secondary growth                                                                      | b) Disease resistance         | c) Reproduction                         | d) Conserving water               |
| 107 | . PEP is present in                                                                      |                               |                                         |                                   |
|     | a) Mesophyll cell                                                                        | b) Bundle sheath cell         | c) Meristematic cell                    | d) Both (a) and (b)               |
| 108 | . The absorption spectrum                                                                | of chlorophyll                |                                         |                                   |
|     | a) Showa that some color                                                                 | ırs of light are absorbed m   | ore than the others                     |                                   |
|     | b) Approximates the action                                                               | on spectrum of photosynth     | nesis                                   |                                   |
|     | c) Explains why chloroph                                                                 | yll is a green pigment        |                                         |                                   |
|     | d) Has all the above prop                                                                | erties                        |                                         |                                   |
| 109 | 09. PGA as the first carbon dioxide fixation product was discovered in photosynthesis of |                               |                                         |                                   |
|     | a) Bryophyte                                                                             | b) Gymnosperm                 | c) Angiosperm                           | d) Alga                           |
| 110 | . In $\mathcal{C}_3$ -plants, the first stab                                             | le compound formed after      | r carbon dioxide fixation is            |                                   |

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 P a g e | 9

a) Phosphoglyceraldehyde

b) Malic acidc) Oxaloacetic acidd) 3-phosphoglycerate

| 111. Which chemical con       | npound/molecule supplies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | electrons continuously to PS-I   | II?                          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|
| a) CO <sub>2</sub>            | b) 0 <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) H <sub>2</sub> O              | d) NADPH                     |
| 112. Colour that we see       | in leaves is due to the prese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nce of                           |                              |
| I. Chlorophyll-a I            | I. Chlorophyll- <i>b</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                              |
| III. Xanthophyll I            | V. Carotenoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                              |
| a) I and II                   | b) I, III and IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) II, III and IV                | d) I, II, III and IV         |
| 113. Quantasomes occur        | on the surface of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                              |
| a) Cristae                    | b) Plasmalemma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) Nuclear envelope              | d) Thylakoids                |
| 114. First carbon dioxid      | e acceptor in C <sub>4</sub> - plants is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                              |
| a) PEP                        | b) PGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) RuBP                          | d) Pyruvic acid              |
| 115. In Calvin cycle, if or   | ne molecule of RuBP is carbo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oxylated than how many PGA       | molecule will be formed?     |
| a) 2                          | b) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c) 4                             | d) 5                         |
| 116. The type of carbon       | dioxide fixation seen in mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y succulent plant species is     |                              |
| a) C <sub>4</sub> -pathway    | b) C <sub>2</sub> -pathway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) CAM-pathway                   | d) C <sub>3</sub> -pathway   |
| 117. Water stress causes      | s the stomata toA hence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | reducing theB availability       | у.                           |
| Here A and B refer            | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                              |
| a) A-open; B-H <sub>2</sub> O | b) A-close; B-H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) A-close; B-CO <sub>2</sub>    | d) A-open; B-CO <sub>2</sub> |
| 118. Photosynthesis can       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng light reaction, only cyclic p | photophosphorylation takes   |
| place. This is becau          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | • • •                        |
| •                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , b) Photosystem-I stops         | s getting excited at a       |
| a) Only ATP is form           | ned, NADPH <sup>+</sup> + H <sup>+</sup> is not for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | med wavelength of light l        | -                            |
| c) There is unidired          | ctional cyclic movement of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                              |
| electrons                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 7.0                          |
| 119. Light reaction of ph     | otosynthesis occurs inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                              |
| a) Stroma                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) Grana                         |                              |
| c) Endoplasmic ret            | iculum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) Cytoplasm                     |                              |
|                               | are rich in which enzyme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                              |
| a) PEP carboxylase            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Malate dehydrogena            | ase                          |
| c) Phosphofructoki            | The same of the sa | d) RuBisCo                       |                              |
| , ,                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l, in which the enzyme that fix  | xes carbon dioxide is        |
| a) Ribulose phosph            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Fructose phosphata            |                              |
|                               | osphate carboxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d) Phosphoenol Pyruvi            |                              |
|                               | olecule of glucose, the Calvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | ,                            |
| a) Two times                  | b) Four times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) Six times                     | d) Eight times               |
| •                             | of photosynthesis end up in t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                | , 0                          |
| a) NaDH <sub>2</sub>          | b) ATP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) Sugar                         | d) NADPH <sub>2</sub>        |
|                               | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ng carbon dioxide fixation oc    | <del>-</del>                 |
| a) Epidermal cells            | b) Mesophyll cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c) Bundle sheath cells           | d) Guard cells               |
| · -                           | of photosynthesis is the for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                | ,                            |
| a) Lipid                      | b) Fat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) Protein                       | d) Sugars                    |
|                               | e chloroplast pigment when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                | ) =g =                       |
| a) They become red            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) They become excited           | d                            |
| c) They lose potent           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Calvin cycle is trigge        |                              |
|                               | first product identified was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ary darring by one is unage      |                              |
| a) 3-PGA                      | b) OAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) 2-PGA                         | d) 1-3DPGA                   |
| 128. Law of limiting fact     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o, = 1 a.i.                      | a, I obi dii                 |
| a) Leibig                     | b) Blackman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) Calvin                        | d) Arnon                     |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the formation ofA by          | •                            |
| What does A and B             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | by                               |                              |

|             |                                     |                                        |                                        | Opius Luucution                        |
|-------------|-------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| -           | A-ATP; B-down hill red              | _                                      | b) A-ADP; B-up hill redox              | -                                      |
| -           | A-NADH + H <sup>+</sup> ; B-dowr    | ••                                     | d) A-NADPH + $H^+$ ; B-dov             |                                        |
|             |                                     | ent present in all autotroph           | = -                                    | -                                      |
| -           | Pelletier Caventou                  | b) Julius Robert Mayer                 | c) Jean Senebier                       | d) Melvin Calvin                       |
|             | •                                   | ere is the membranous sys              | tem consisting of                      |                                        |
| _           | rana                                |                                        |                                        |                                        |
|             | stroma lamellae                     |                                        |                                        |                                        |
|             | fluid stroma                        |                                        |                                        |                                        |
|             | oose the correct option             |                                        | -) I IIII                              | 1) I II I III                          |
| ,           | I and II                            | b) II and III                          | c) I and III                           | d) I, II and III                       |
|             | = =                                 | that when mouse alone w                | · · · · · · · · · · · · · · · ·        | _                                      |
|             |                                     | d alive and candle continue            | <del>-</del>                           | vith a mint plant in the same          |
|             | Burning candle remove               |                                        | b) Mint plant restore the              | _                                      |
| _           | Both (a) and (b)                    | tile all                               | d) CO <sub>2</sub> is required for bur |                                        |
| -           | ganelles involved in ph             | otoresniration is /are                 | uj co <sub>2</sub> is required for but | ining of cantale                       |
| -           | hloroplast                          | otorespiration is/are                  |                                        |                                        |
|             | peroxisomes                         |                                        |                                        |                                        |
| _           | mitochondria                        |                                        |                                        |                                        |
|             | oose the correct option             | 1                                      |                                        |                                        |
|             | I and II                            | b) II and III                          | c) III and I                           | d) I, II and III                       |
| •           |                                     | tion of photosynthesis is              | -,                                     | ) -,                                   |
|             | Formation of ATP                    |                                        |                                        |                                        |
| =           | Ionization of water                 | 731                                    |                                        |                                        |
| -           |                                     | dioxide to a pentose sugar             |                                        |                                        |
| -           |                                     | of chlorophyll by a photon             | of light                               |                                        |
| -           | vin cycle is also called            | C FRIIA                                | A STANISH A                            |                                        |
| a) (        | Calvin-Benson cycle                 | JPLUS EDUC                             | b) C <sub>3</sub> -cycle               |                                        |
| c) l        | Reductive pentose patl              | ıway                                   | d) All of the above                    |                                        |
| 136. Pla    | nts in which the first p            | roduct of $CO_2$ fixation is $C_3$     | acid, i.e., theA pathwa                | y, and those in which the              |
| firs        | st product was C <sub>4</sub> acid  | (OAA), <i>i.e.</i> , theB pathw        | <i>r</i> ay                            |                                        |
| Cor         | mplete the given stater             | nent by filling appropriate            | options in the given blanks            | 3                                      |
| a) <i>a</i> | A-C <sub>2</sub> ; B-C <sub>3</sub> | b) A-C <sub>3</sub> ; B-C <sub>4</sub> | c) A-C <sub>4</sub> ; B-C <sub>2</sub> | d) A-C <sub>2</sub> ; B-C <sub>3</sub> |
| 137. Pho    | otosynthesis is an impo             | ortant process for life on ea          | rth because                            |                                        |
| -           | It is the primary source            |                                        |                                        |                                        |
|             | It is responsible for the           |                                        |                                        |                                        |
| -           |                                     | ocess responsible for the u            | tilisation of sunlight                 |                                        |
| -           | All of the above                    |                                        |                                        |                                        |
|             |                                     | he photolysis of water are             |                                        |                                        |
|             | O                                   | Calcium                                |                                        |                                        |
|             | J                                   | Chloride                               |                                        |                                        |
| -           | I and II only                       | b) I, II and IV only                   | c) I, II and II only                   | d) I and IV only                       |
|             | vin cycle represents                |                                        |                                        | 1                                      |
| -           | Reductive carboxylatio              | n                                      | b) Substrate level phosph              | •                                      |
| -           | Dark respiration                    | c                                      | d) Oxidative carboxylatio              |                                        |
|             | = =                                 | ence of enzymes given below            | w wnich participate in the i           | regeneration phase of                  |
|             | vin cycle.                          | igomoras:                              |                                        |                                        |
| Ι.          | Ribulose-5-phosphate                |                                        |                                        |                                        |
| 11.         | Ribulose-5-phosphate                | e chimerase                            |                                        |                                        |

|                                                                                  |                                      | Gpius Education                          |
|----------------------------------------------------------------------------------|--------------------------------------|------------------------------------------|
| III. Transketolase                                                               |                                      |                                          |
| IV. Triose phosphate isomerase                                                   |                                      |                                          |
| a) VI, I, III, II b) III, IV, II, I                                              | c) IV, III, I, II                    | d) II, I, IV, III                        |
| 141. Etiolation in plants is caused when they                                    |                                      |                                          |
| a) Are grown in dark                                                             | b) Have mineral deficien             | cy                                       |
| c) Are grown in intense light                                                    | d) Are grown in blue ligh            | ıt                                       |
| 142. Dichlorophenyl dimethylurea inhibits                                        |                                      |                                          |
| a) PS-I                                                                          | b) PS-II                             |                                          |
| c) Chloroplast functioning                                                       | d) Oxidative phosphoryl              | ation                                    |
| 143. Photosynthetic pigments in chloroplast are embedo                           | led in the membrane of               |                                          |
| a) Photoglobin b) Matrix                                                         | c) Thylakoid                         | d) Mitochondria                          |
| 144. Pigments can be separated from leaf by                                      |                                      |                                          |
| a) ELISA test                                                                    | b) RIA test                          |                                          |
| c) Centrifugation                                                                | d) Paper chromatograph               | y                                        |
| 145. In which of the following, oxygen does not evolve d                         | uring photosynthesis?                |                                          |
| a) Photosynthetic red algae                                                      |                                      |                                          |
| b) Photosynthetic green algae                                                    |                                      |                                          |
| c) Photosynthetic blue-green algae                                               |                                      |                                          |
| d) Photosynthesis bacteria                                                       |                                      |                                          |
| 146. Who proved that the organic matter is synthesised                           | from carbon dioxide and w            | ater during the                          |
| photosynthesis?                                                                  |                                      | O                                        |
| a) Liebig b) Priestley                                                           | c) Ingen Housz                       | d) Von Mayer                             |
| 147. Which of the following statements is true with rega                         | , 0                                  |                                          |
| In PS-II the reaction centre chlorophyll- $\alpha$ has an                        | In PS <sub>-</sub> I the reaction ce | ntre chlorophyll-α has an                |
| a) absorption peak at 700 nm hence, is called $P_{700}$                          | n ı                                  | 680 nm and is called P <sub>680</sub>    |
| c) The spitting of water molecule is associated with                             |                                      | II are involved in Z scheme              |
| PS-I                                                                             |                                      |                                          |
| 148. In Calvin cycle, the first product identified was                           | CATION                               |                                          |
| a) 3-phosphoglyceric acid                                                        | b) 2-phosphoglyceric aci             | d                                        |
| c) 1-phosphoglyceric acid                                                        | d) 4-phosphoglyceric aci             |                                          |
| 149. I. Water is oxidised in PS-I not in PS-II                                   | , 1 1 8 3                            |                                          |
| II. Light is needed for both PS-I and PS-II                                      |                                      |                                          |
| III. Due to photolysis of water, formation of ATP and                            | d NADPH occurs                       |                                          |
| IV. Production of NADPH and H <sup>+</sup> is associated with                    |                                      |                                          |
| Identify the true statement and select the correct of                            |                                      |                                          |
| a) I and II b) II and III                                                        | c) I and IV                          | d) II and IV                             |
| 150. PS-I is located on the                                                      | -,                                   | •.) ••                                   |
| a) Non-appressed part of a grana thylakoids                                      | b) Stroma thylakoids                 |                                          |
| c) Appressed part of grana thylakoids                                            | d) Both (a) and (b)                  |                                          |
| 151. I. Chlorophyll- <i>a</i>                                                    | a) Both (a) and (b)                  |                                          |
| II. Chlorophyll- <i>b</i>                                                        |                                      |                                          |
| III. Anthocyanin                                                                 |                                      |                                          |
| Select the correct option regarding water soluble pi                             | gment                                |                                          |
| a) I and II b) Only II                                                           | c) Only II                           | d) I and II                              |
| 152. C <sub>4</sub> -plant minimises the photorespiration because C <sub>4</sub> |                                      | uj i anu ii                              |
| a) Use PEPcase to initiate CO <sub>2</sub> fixation                              |                                      | alvin cycle in low CO <sub>2</sub> level |
| c) Exclude Calvin cycle                                                          | d) Show photorespiratio              |                                          |
| 153. In the process of photosynthesis, water molecule br                         |                                      | 11                                       |
| a) Red drop                                                                      | b) Photolysis                        |                                          |
| aj Neu urop                                                                      | oj i ilutulysis                      |                                          |

c) Phosphorylation

- d) Carbon assimilation
- 154. Identify A, B and C in the given figure, and choose the correct option from the set (A-C) given below



- a) A-Reduction, B-Carboxylation, C-Regeneration
- b) A-Reduction, B-Regeneration, C-Carboxylation
- c) A-Carboxylation, B-Reduction, C-Regeneration
- d) A-Carboxylation, B-Regeneration, C-Reduction
- 155. In grana of chloroplast, the reaction ADP +  $P_i$  = ATP during day shows
  - a) Oxidative phosphorylation

- b) Photophosphorylation
- c) Substrate level phosphorylation
- d) Dephosphorylation
- 156. Very strong light has a direct inhibiting effect on photosynthesis, which is known as
  - a) Solarization
- b) Etiolaration
- c) Chlorosis
- d) Defoliation
- 157. What is the effect of high CO<sub>2</sub> concentration and higher values of ATP/ADP ratio?
  - a) Rate of Calvin cycle increased

- b) Rate of Kreb cycle decreased
- c) Rate of glycolate cycle decreased
- d) All of the above
- 158. pH of thylakoid lumen during photosynthesis is
  - a) Basic

b) Neutral

c) Acidic

- d) Depends on H<sup>+</sup> concentration
- 159. Head portion of the chlorophyll is called ...A... Tail portion of the chlorophyll is called ...B... Fill in the with respect to A, B and tick the appropriate option
  - a) A-phytol, B-porphyrin

b) A-porphyrin, B-phytol

c) A-pyrrole ring, B-phytol

- d) A-porphyrin, B-pyrrole ring
- 160. Members of family-Crassulaceae perform
  - a) C<sub>3</sub>-photosynthesis
- b) CAM-photosynthesis
- c) C<sub>4</sub>-photosynthesis
- d) All of these
- 161. ...A... plants have the higher temperature optimum than ...B... the plants adapted climate Here A and B refer to
  - a) A-Desert; B-Tropical

b) A-Temperature; B-Tropical

c) A-Tropical; B-Temperature

- d) A-Desert; B-Temperature
- 162. Which is not correct for ancient plants?
  - a) They have photosynthetic pigment
  - b) They are primitive algae
  - c) They use H<sub>2</sub>S as hydrogen source
  - d) They release oxygen as byproduct
- 163. Which of the following cell organelles is associated with photorespiration?
  - a) Mitochondria
- b) Peroxisome
- c) Chloroplast
- d) All of these
- 164. The protons are transported across the thylakoid membrane into the lumen because
  - a) Electrons are transferred to hydrogen carrier is which is present on inner membrane
    - b) Electrons are transferred to electron carrier
    - c) Electrons are transferred to intermembrane space
    - d) Electrons are transferred to hydrogen carrier, which is present outer side of membrane
- 165. The light phase of photosynthesis is called

a) Hill reaction

b) Photo action

c) Pigment action

- d) Chlorophyllous process
- 166. Which of the following statements are correct?
  - I. Light reaction occurs in stroma
  - II. Light reaction occurs in grana
  - III. Dark reaction occurs in stroma
  - IV. Dark reaction occurs in grana

Choose the correct option

- a) I and II
- b) II and IV
- c) III and IV
- d) II and III

- 167. In photosynthesis, what does occur in PS-II?
  - a) It takes longer wavelength of light and e<sup>-</sup>from H<sub>2</sub>O
  - b) It takes shorter wavelength of light and  $e^-$  from  $H_2O$
  - c) It takes longer wavelength of light and  $e^-$  from NADP
  - d) It takes shorter wavelength of light and  $e^-$  from NADP
- 168. Cyclic-photophosphorylation results in the formation of
  - a) NADPH

b) ATP and NADPH

c) ATP, NADPH and oxygen

d) ATP

169. Identify A, B and C in given figure



- a) A-Stroma wall, B-Grana, C-Stroma
- b) A-Stroma lamella, B-Grana, C-Stroma
- c) A-Stroma lamella, B-Stroma, C-Grana
- d) A-Starch grain, B-Stroma, C-Grana
- 170. In photosystem II, the reaction centre chlorophyll-*a* absorbs ...A... nm wave length of red light causing electrone to become excited and jump into an orbit farther from the atomic nucleus. These electrons are picked up by an ...B..., which passes them to an electron transport system constisting of ...C...

Pick the right choice for A, B and C

- a) A-680 nm, B-electron donor, C-cytochromes
- b) A-780 nm, B-electron acceptor, C-cytochromes
- c) A-680 nm, B-electron acceptor, C-cytochromes
- d) A-780 nm, B-electron donor, C-cytochromes
- 171. Which of the following statements with regard to photosynthesis is/are correct?
  - I. In C<sub>4</sub>-plants, the primary CO<sub>2</sub> acceptor is PEP.
  - II. In the photosynthetic process, PS-II absorbs energy at or just below 680 nm.
  - III. The pigment that is present in the Pigment System-I is  $P_{683}$ .
  - a) II and III only
- b) I only
- c) III only
- d) I and II only

172. Which one is correct for  $C_4$ -plants?

#### Mesophyll

#### Bundle Sheath

- a) PEPcase C<sub>4</sub>-cycle RuBisCo C<sub>3</sub>-cycle
- b) PEPcase Calvin cycle RuBisCo C<sub>4</sub>-cycle

- c) RuBisCo C<sub>4</sub>-cycle
- PEPcase C<sub>3</sub>-cycle
- d) RuBisCo C<sub>2</sub>-cycle PEPcase C<sub>3</sub>-cyce
- 173. Synthesis of food in  $C_4$ -pathway occurs in chlorophyll of
  - a) Guard cells

b) Bundle sheath cells

c) Spongy mesophyll cells

- d) Palisade cells
- 174. Which one is the correct reaction of photosynthesis?

a) 
$$6CO_2 + 6H_2O \xrightarrow{Light} 6O_2 + C_6H_{12}O_6$$

b) 
$$6CO_2 + 12H_2O \xrightarrow{\text{Light}} + C_6H_{12}O_6 + 6O_2 + 6H_2O$$

c) 
$$C_6H_{12}O_6 + 6O_2 + 6H_2O \xrightarrow{\text{Light}} 6CO_2 + 12H_2O + \text{Energy}$$

d) 
$$C_6H_{12}O_6 + 6O_2 \xrightarrow{\text{Light}} 6CO_2 + 6H_2O + \text{Energy}$$

- 175. I. Lysosome
- II. Chloroplast
- III. Peroxisome IV. Mitochondria

Which of the following organelles is/are not related to photorespiration?

Choose the correct option

- a) Only I
- b) I, IV and II
- c) I, III and IV
- d) Only IV
- 176. Identify A, B, C and D in the given figure and choose the correct option accordingly



- a) A-Mesophyll cell, B-Fixation, C-Bundle sheath cell, D-Decarboxylation
- b) A- Mesophyll cell, B-Decarboxylation, C-Bundle sheath cell, D-Fixation
- c) A-Chloroplast, B-Decarboxylation, C-Bundle sheath cell, D-Fixation
- d) A-Chloroplast, B-Fixation, C-Bundle sheath cell, D-Fixation
- 177. In photosynthesis, action and absorption spectrum were related by
  - a) Von Helmont
- b) Englemann
- c) Emerson
- d) Lovoisier

- 178. Which of the following is the formula of chlorophyll-a?
  - a)  $C_{55}H_{70}O_{2}N_{4}Mg$
- b)  $C_{55}H_{72}O_5N_4Mg$
- c)  $C_{55}H_{70}O_5N_4Mg$
- d)  $C_{55}H_{72}O_2N_4Mg$
- 179. Oxygen which is liberated during photosynthesis, comes from
  - a) Carbon cells
- b) Spongy cells c) Palisade cells
- d) Bundle sheath cells
- 180. Photosynthetic organisms remove ....... of carbon/year if assumed that the photosynthetic organisms use 0.1% of incident visible light
  - a) 0.1015 tonn
- b) 0.2015 tonn
- c) 0.1123 tonn
- d) 0.03 tonn

- 181. Light reaction or photochemical phase includes
  - I. light absorption
  - II. water splitting
  - III. oxygen release
  - IV. ATP and NADP formation

Select the correct option

- a) I, II and IV
- b) I, II and III
- c) I, III and IV
- d) I, II, III and IV
- 182. Identify A, B and C shown in a table representing the Calvin cycle

| In           | Out         |
|--------------|-------------|
| $ACO_2$      | One glucose |
| <i>B</i> ATP | ADP         |
| C NADPH      | NADP        |

Choose the correct option

- a) A-5 CO<sub>2</sub>, B-18, C-12
- b) A-6 CO<sub>2</sub>, B-12, C-18
- c) A-4 CO<sub>2</sub>, B-12, C-18
- d) A-6 CO<sub>2</sub>, B-18, C-12
- 183. Rate of photosynthesis is low in herbs, shurbs as compared to sun plants because
  - a) Herb, shrubs receive mere red light
  - b) Herb, shrubs receive mere blue light
  - c) Herb, shrubs receive mere more green light
  - d) Herb, shrubs receive more white light

| 184. PEPcase has an advantage over RuBisCo. The advan                  | tage is                              | •                                |  |
|------------------------------------------------------------------------|--------------------------------------|----------------------------------|--|
| a) RuBisCo combines with $\rm O_2$ but PEPcase do not                  |                                      |                                  |  |
| b) RuBisCo combines with NO <sub>2</sub> but PEPcase do not            |                                      |                                  |  |
| c) RuBisCo conserve energy but PEPcase do not                          |                                      |                                  |  |
| d) PEPcase is present in both mesophyll cells and bu                   |                                      | sCo is not                       |  |
| 185. Activator of ribulose biphosphate carboxylase oxygen              | enase is                             |                                  |  |
| a) Mg <sup>2+</sup> b) Zn <sup>2+</sup>                                | c) Ca <sup>2+</sup>                  | d) SO <sub>4</sub> <sup>2-</sup> |  |
| 186. Photolysis of water during photosynthesis occurs w                | ith the help of                      |                                  |  |
| a) PS-II b) PS-I                                                       | c) Ferredoxin                        | d) Cytochrome                    |  |
| 187. RuBP + $O_2 \xrightarrow{X} PGA + Phosphoglycolate$ .             |                                      |                                  |  |
| Identify $x$ in the given equation and choose the corr                 | ect option                           |                                  |  |
| a) RuBP carboxylase b) RuBP oxygenase                                  | c) RuBisCo                           | d) PEP-carboxylase               |  |
| 188. Which one of the following is wrong in relation to pl             | hotorespiration?                     |                                  |  |
| a) It is a characteristic of C <sub>4</sub> -plants                    |                                      |                                  |  |
| b) It is a characteristics of C <sub>3</sub> -plants                   |                                      |                                  |  |
| c) It is occurs in chloroplasts                                        |                                      |                                  |  |
| d) It occurs in day-time only                                          |                                      |                                  |  |
| 189. Flow of electrons in non-cyclic photo phosphorylati               | on is                                |                                  |  |
| a) Unidirectional (from PS-I to PS-II)                                 | b) Amphidirectional                  |                                  |  |
| c) Bidirectional                                                       | d) Unidirectional (from P            | S-II to PS-I)                    |  |
| 190. Priestley discovered oxygen in                                    | ,                                    | ŕ                                |  |
| a) 1770 b) 1774                                                        | c) 1778                              | d) 1782                          |  |
| 191. Which of the following is wrongly matched?                        |                                      |                                  |  |
| a) Sorghum – Kranz anatomy                                             | b) PEP carboxylase – Mes             | sophyll cells                    |  |
| c) Blackman – Law of limiting factors                                  | d) Photosystem-II – P <sub>700</sub> |                                  |  |
| 192. Transport of C <sub>4</sub> acid from mesophyll cells to the bur  |                                      | through                          |  |
| a) Cell membrane b) Cell wall                                          | c) Plasmodesmata                     | d) Osmosis                       |  |
| 193. Maximum amount of photosynthesis occurs in                        | "ALION                               | ,                                |  |
| a) Light compensation point                                            | b) $0_2$ compensation poin           | t                                |  |
| c) Saturation point                                                    | d) Desaturation point                |                                  |  |
| 194. Sunken stomata are usually found in                               |                                      |                                  |  |
| a) $C_3$ plants b) CAM plants                                          | c) Insectivorous plants              | d) Phanerogams                   |  |
| 195. I. In C <sub>3</sub> -plant, Calvin pathway takes place in mesoph |                                      | ý                                |  |
| II. In C <sub>4</sub> -plant, Calvin pathway takes place in the me     | •                                    |                                  |  |
| Which of the following statements true?                                | . ,                                  |                                  |  |
| Choose the correct option                                              |                                      |                                  |  |
| a) Statement I is incorrect, II is correct                             | b) Statement II is incorre           | ct, I is correct                 |  |
| c) Both incorrect                                                      | d) Both correct                      |                                  |  |
| 196. C <sub>3</sub> -plant show optimum photosynthesis at              |                                      |                                  |  |
| a) High O <sub>2</sub>                                                 | b) High CO <sub>2</sub>              |                                  |  |
| c) Low $O_2$                                                           | d) High temperature = 45             | 5°C                              |  |
| 197. During C <sub>4</sub> -cycle, the acid formed are                 | , 0 1                                |                                  |  |
| I. Picric acid II. OAA                                                 |                                      |                                  |  |
| III. Malic acid IV. Aspartic acid                                      |                                      |                                  |  |
| Select the correct option                                              |                                      |                                  |  |
| a) I, II, III and IV b) II, III and IV                                 | c) I, IV and II                      | d) I, III and IV                 |  |
| 198. Consider the following statements regarding photos                |                                      | •                                |  |
| I. ATP formation during photosynthesis is termed as                    |                                      |                                  |  |
| II Kranz anatomy pertains to leaf                                      |                                      |                                  |  |

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

**PHONE NO: 8583042324** Page | 16

|             | III. Reduction of NADP <sup>+</sup> t          | o NADPH occurs during Ca                    | alvin cycle.                            | •                                         |
|-------------|------------------------------------------------|---------------------------------------------|-----------------------------------------|-------------------------------------------|
|             | IV. In a chlorophyll molec                     | cule, magnesium is present                  | t in phytol tail.                       |                                           |
|             | a) I and II correct                            |                                             | b) III and IV are correct               |                                           |
|             | c) I and III are correct                       |                                             | d) I and IV correct                     |                                           |
| 199         | . Presence of bundle sheat                     | h is a characteristic of                    |                                         |                                           |
|             | a) Xerophytic plants                           |                                             | b) Members of grass fan                 | nily                                      |
|             | c) C <sub>4</sub> -plants                      |                                             | d) C <sub>3</sub> -plants               |                                           |
| 200         | . Oxygenic photosynthesis                      | occurs in                                   |                                         |                                           |
|             | a) <i>Chromatium</i>                           | b) <i>Oscillatoria</i>                      | c) <i>Rhodospirillum</i>                | d) <i>Chlorobium</i>                      |
| 201         | . I. They have special leaf a                  | natomy                                      |                                         |                                           |
|             | II. They tolerate high tem                     | perature                                    |                                         |                                           |
|             | III. Lack photorespiration                     | 1                                           |                                         |                                           |
|             | IV. Greater productivity of                    | of biomass                                  |                                         |                                           |
|             | These are the probable cl                      | naracters of                                |                                         |                                           |
|             | a) C <sub>2</sub> -plant                       | b) C <sub>3</sub> -plant                    | c) C <sub>4</sub> -plant                | d) Any plant                              |
| 202         | . In which region, most of t                   | the photosynthesis takes p                  | lace?                                   |                                           |
|             | a) Red and green region                        |                                             | b) Violet and indigo regi               | ion                                       |
|             | c) Blue and red region                         |                                             | d) Blue and black region                |                                           |
| 203         | ,                                              | strating the evolution of ox                | ,                                       | icarbonate is added to water              |
|             |                                                | <del>-</del>                                | ll other conditions are favo            |                                           |
|             |                                                |                                             | dioxide in water is absorbe             |                                           |
|             |                                                |                                             | ability of carbon dioxide in            |                                           |
|             | · · ·                                          |                                             | lability of carbon dioxide in           |                                           |
|             |                                                |                                             | ioxide in water is absorbe              |                                           |
| 204         |                                                | Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | om CO <sub>2</sub> during photosynth    |                                           |
|             | a) Von Neil                                    | b) Engelmann                                | c) Blackman                             | d) Warburg                                |
| 205         | •                                              | , ,                                         | rom water during photosyr               | ,                                         |
|             | a) $6CO_2^{18} + 12H_2O \rightarrow 6O_2^{18}$ |                                             |                                         |                                           |
|             | b) $6CO_2 + 12H_2O^{18} \rightarrow 60$        |                                             | 07111011                                |                                           |
|             | c) $6CO_2^{18} + 12H_2O \rightarrow 6C$        |                                             |                                         |                                           |
|             | d) $6CO_2 + 12H_2O^{18} \rightarrow 6C$        | _                                           |                                         |                                           |
| 206         | . The components of PS-I a                     |                                             |                                         |                                           |
| 200         | a) Stroma                                      | ire located on the                          | b) Stroma thylakoid                     |                                           |
|             | c) Granum thylakoid                            |                                             | -                                       | nal and granal thylakoid                  |
| 207         | . Cyclic photophosphoryla                      | tion occurs in                              | d) Outer surface of stroi               | nai and granai diylakold                  |
| 207         | a) Stroma lamellae                             | don occurs in                               | b) Appressed part of gra                | una lamellae                              |
|             | c) Stroma cell wall                            |                                             | d) Grana cell wall                      | ana lamenae                               |
| 208         |                                                | na a charactoristic niamon                  | it, which contains copper c             | ontaining protoin                         |
| 200         | a) Plastoquinone                               | b) Ferredoxin                               | c) Cytochrome                           | d) Plastocyanin                           |
| 200         | •                                              | •                                           | are located in the thylako              |                                           |
| 209         |                                                |                                             | roma becomes more acidic                |                                           |
|             | thylakoid membrane                             | ylation, the chloropiast st                 | ionia becomes more acidic               | than the interior of                      |
|             | •                                              | igh the protein channels w                  | hich are ATP synthetase n               | nologulog                                 |
|             |                                                |                                             | of the thylakoid in the chl             |                                           |
|             |                                                |                                             |                                         | <del>-</del>                              |
|             |                                                |                                             | orm H <sup>+</sup> , yielding electrons | to P5-11                                  |
|             | Which of the following sta                     |                                             | c) IV and V                             | d) Only II                                |
| 210         | a) I and II Which of the following old         | b) III and IV                               | c) IV and V                             | d) Only II<br>e carboxylase oxygenase and |
| <b>∠1</b> 0 |                                                | rboxylase in photosynthet                   |                                         | e carboxyrase oxygenase and               |

|      |                                          |                               |                                          | <b>Gplus Education</b>           |
|------|------------------------------------------|-------------------------------|------------------------------------------|----------------------------------|
|      | a) Mg <sup>2+</sup>                      | b) Zn <sup>2+</sup>           | c) Ca <sup>2+</sup>                      | d) SO <sub>4</sub> <sup>2-</sup> |
| 211. | Who experimentally prove                 | ed that source of oxygen di   | uring photosynthesis is wat              | ter?                             |
|      | a) Van Niel                              | b) Robin Hill                 | c) Arnon                                 | d) Emerson                       |
| 212. | Warburg effect is the                    |                               |                                          |                                  |
|      | a) Inhibition of C <sub>4</sub> -cycle b | y O <sub>2</sub>              | b) Inhibition of C <sub>2</sub> -cycle b | $y O_2$                          |
|      | c) Inhibition of C <sub>3</sub> -cycle b | y 0 <sub>2</sub>              | d) Inhibition of C <sub>3</sub> -cycle b | y CO <sub>2</sub>                |
| 213. | Oxaloacetic acid changes t               | to the malic acid by the acti | ion of                                   |                                  |
|      | a) Oxaloacetic dehydroger                | nase                          | b) Malic dehydrogenase                   |                                  |
|      | c) PEP dehydrogenase                     |                               | d) RMP dehydrogenase                     |                                  |
| 214. | Consider the following sta               | itements.                     |                                          |                                  |
|      | I. The portion of the spect              | rum between 300-500 nm        | is also referred to as Photo             | synthetically Active             |
|      | Radiation (PAR).                         |                               |                                          |                                  |
|      | II. Magnesium, calcium an                | d chloride ions play promi    | nent roles in the photolysis             | s of water.                      |
|      | III. In cyclic photophospho              | orylation, oxygen is not rele | eased (as there is no photo              | lysis of water) and NADPH        |
|      | is also not produced.                    |                               |                                          |                                  |
|      | a) I is true; but II and III a           | re false                      | b) I and II are false; but III           | I is true                        |
|      | c) II is true; but I and III a           | re false                      | d) I and II are true; but III            | is false                         |
| 215. | When two photosystem (I                  | and II) work in a series, th  | ne phosphorylation is called             | d                                |
|      | a) Cyclic                                | b) Non-cyclic                 | c) Bicyclic                              | d) Both (a) and (b)              |
| 216. | The ATPase enzyme consi                  | sts of                        |                                          |                                  |
|      | $I. F_0  II. F_1  III. F_2$              |                               |                                          |                                  |
|      | Select the correct option                |                               |                                          |                                  |
|      | a) I and III                             | b) I and II                   | c) Only I                                | d) II and III                    |
| 217. | Chemiosmosis requires                    |                               |                                          |                                  |
|      | I. a membrane                            |                               |                                          |                                  |
|      | II. a proton pump                        |                               |                                          |                                  |
|      | III. a proton gradient                   | C EDII/                       | ATTON                                    |                                  |
|      | Select the correct option                | JPLUS EDUC                    | AHON .                                   |                                  |
|      | a) II and III                            | b) I and III                  | c) I and II                              | d) I, II and III                 |
| 218. | Biosynthetic phase of pho                | tosynthesis is dependent o    | n                                        |                                  |
|      | I. NADPH II. NADH                        |                               |                                          |                                  |
|      | III. ATP IV. $NAD^+ + H^+$               | <del>l</del>                  |                                          |                                  |
|      | a) I and III                             | b) IV and I                   | c) I and VI                              | d) IV and II                     |
| 219. | Kranz anatomy is the char                |                               |                                          |                                  |
|      | a) C <sub>5</sub> -plants                | b) C <sub>3</sub> -plants     | c) C <sub>2</sub> -plants                | d) C <sub>4</sub> -plants        |
| 220. | 2.1                                      | related to plant photosynt    | chesis peroxisomes are invo              | olved?                           |
|      | a) Glycolate cycle                       |                               | b) Calvin cycle                          |                                  |
|      | c) Bacterial photosynthes                | is                            | d) Glyoxylate cycle                      |                                  |
| 221. | Photosynthesis is a                      |                               |                                          |                                  |
|      | a) Catabolic process                     | b) Anabolic process           | c) Amphibolic process                    | d) Catalytic process             |
| 222. | -                                        | t, the photosynthesis begir   | ns to decline because of                 |                                  |
|      | I. Photo inbibition                      |                               |                                          |                                  |
|      | II. Photo-oxidation                      |                               |                                          |                                  |
|      |                                          |                               |                                          |                                  |

III. Photo-reduction Select the/correct option which matches with statement a) I and III b) III and II c) I, II, and III d) I and II 223. A chemical substance when irradiated with UV rays, absiorb radiations and emits visible light is called b) Fluorochrome c) Bioluminescence d) Metachrome a) Luminescent 224. Identify A, B and C in the given figure of cyclic phosphorylation and choose the correct option accordingly **GPLUS EDUCATION** WEB: <u>WWW.GPLUSEDUCATION.ORG</u> **PHONE NO: 8583042324** Page | 18



- a) A-ETS, B-ADP + Pi  $\rightarrow$  ATP, C-PS-II
- b) A-ETS, B-ADP + Pi  $\rightarrow$  ATP, C-PS-I
- c) A-NADH<sub>2</sub>, B-ADP + Pi  $\rightarrow$  ATP, C-PS-I
- d) A-NADH<sub>2</sub>, B-ADP + Pi  $\rightarrow$  ATP, C-PS-II

225. Chlorophyll-a and b differ in having

- a) Chlorophyll-*a* has a methyl group and chlorophyll-b) Chlorophyll-*a*has an aldehyde group and *b* has aldehyde group in position X chlorophyll-*b* has a methyl group in position X
- c) Chlorophyll-*a* has a carboxyl group and Chlorophyll-*b* has an aldehyde group in position X

d) Chlorophyll-*a* has an ethyl group and Chlorophyll-*b* has an aldehyde group in position X

226. Of the total incident solar radiation the proportion of PAR is

- a) About 60%
- b) Less than 50%
- c) More than 80%
- d) About 70%

227. Who discovered that light is essential for releasing oxygen in plants?

- a) Stephen Hales
- b) Lavoisier
- c) Jan Ingenhousz
- d) Von Helmont

228. How many Calvin cycles are required to produce 5 molecules of glucose?

a) 60

b) 15

c) 30

d) 90

229. During light reaction of photosynthesis

- a) ADP is phosphorylated and NADPH oxidised
- b) ADP is phosphorylated and NADP reduced
- c) ADP is phosphorylated and NADPH reduced
- d) ATP is phosphorylated and NADPH reduced

230. The ATP production in photosynthesis is called

a) Phototropism

b) Phosphorylation

c) Photooxidation

d) Photophosphorylation

231. Who described the first action spectrum of photosynthesis?

- a) Sachs
- b) Engelmann
- c) Arnold
- d) Von Helmont

232. Who provided the evidence for the production of glucose when plant grows?

- a) Julius von Sachs
- b) Stephen Hales
- c) Lavoisier
- d) Von Helmont

233. Which of the following is used during discovery of Calvin cycle?

- a) Spirogyra
- b) Volvox
- c) Chlamydomonas
- d) Chlorella

234. The movement of electrons in ETC in light reaction is?

- a) Up hill in terms of redox reaction
- b) Down hill in terms of redox reaction

c) Either (a) or (b)

d) Both (a) and (b)

235. The wavelength of light absorbed by P<sub>r</sub> from of phytochrome is

- a) 640 nm
- b) 680 nm
- c) 720 nm
- d) 620 nm

236. In C<sub>4</sub>- plants, the carbon dioxide fixation accurs in

- a) Guard cells
- b) Spongy cells
- c) Palisade cells
- d) Bundle sheath cells

237. What is the name given to the flattened membranous sacs which are embedded in the matrix of the chloroplast?

WEB: WWW.GPLUSEDUCATION.ORG

- a) Thylakoids
- b) Granum
- c) Stroma
- d) Mesophyll cells

238. C<sub>4</sub>-plants are more efficient in photosynthesis than C<sub>3</sub> plants due to

- a) Higher leaf area
- b) Presence of larger number of chloroplasts in the leaf cells
- c) Presence of thin cuticle
- d) Lower rate of photorespiration
- 239. Which of the following is maximum in chloroplast?

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | Gpius Educatio                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------|
| a) RuBP carboxylase b) Hexokinase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) Phosphatase                      | d) Nuclease                     |
| 240. Photolysis of water releases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |                                 |
| I. electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                 |
| II. proton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                 |
| III. oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                 |
| Select the correct option                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |                                 |
| a) I and II b) II and III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) I and III                        | d) I, II and III                |
| 241. Which of the following characteristics out of I, II,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III, IV are exhibited by ${ m C_4}$ | -plant?                         |
| I. Kranz anatomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                 |
| II. Oxaloacetic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |                                 |
| III. Large bundle sheath cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |                                 |
| IV. Found only in desert area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                 |
| a) I, II and III b) I, II and IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) II, III and IV                   | d) III, I and IV                |
| 242. In C <sub>4</sub> -plants, the bundle sheath cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                 |
| a) Have cells density of chloroplast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) Are rich in PEPca                | se                              |
| c) Have large number of Rubisco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Are large sized ha               |                                 |
| 243. The Z scheme of electron transport is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                 |
| a) Cyclic photophosphorylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b) Non-cyclic photop                | phosphorylation                 |
| c) Both (a) and (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | system pigment-I is involved    |
| 244. Photophosphorylation in chloroplast is most simi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | by stem pigment i is mivorved   |
| a) Mitochondrial substrate level phosphorylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                 |
| b) Mitochondrial oxidative phosphorylation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |                                 |
| c) Mitochondrial hydrolysis of H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                 |
| d) All of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                   |                                 |
| The state of the s | 9                                   |                                 |
| 245. I. Chlorophyll- <i>a</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |                                 |
| II. Chlorophyll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                 |
| III. Xanthophyll<br>IV. Carotenoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CATION                              |                                 |
| The state of the s | CHILVII                             | ad dansin a ula aka armkla asia |
| Separate the given pigments into the accessory an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd main pigments involve            | ed during photosynthesis        |
| Main pigment Accessory Pigment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 11 111 1117 1                    |                                 |
| a) I II, III, IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) II, III and IV I                 | 1 111                           |
| c) II and III I and IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     | and III                         |
| 246. In photosynthesis, energy from light reaction to d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                 |
| a) ADP b) ATP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) RuBP                             | d) chlorophyll                  |
| 247. RuBisCo performs oxygenase activity at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                                 |
| a) Low CO <sub>2</sub> concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b) High CO <sub>2</sub> concent     |                                 |
| c) High H <sub>2</sub> O concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d) Low H <sub>2</sub> O concent     | ration                          |
| 248. Primary acceptor of $CO_2$ in $C_4$ -cycle is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                                 |
| a) PGA b) PEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c) RuBP                             | d) OAA                          |
| 249. In bundle, sheath cells are the large cells around t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the                                 |                                 |
| a) Vascular bundles of C <sub>4</sub> -plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) Vascular bundles                 | C <sub>3</sub> -plants          |
| c) Vascular bundles of C <sub>2</sub> -plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) All of the above                 |                                 |
| 250. Which of the following is the first compound that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | accepts carbon dioxide d            | luring dark phase of            |
| photosynthesis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                 |
| a) NADP b) RuBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c) Ferredoxin                       | d) Cytochrome                   |
| 251. Number of carboxylation occurs in Calvin cycle is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                 |
| a) Zero b) One                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c) Two                              | d) Three                        |
| 252. Plants adapted to low light intensity have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                 |
| a) Larger photosynthetic unit size than the sun pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lants                               |                                 |

b) Higher rate of carbon dioxide fixation than the sun plants c) More extended root system d) Leaves modified to spines 253. If green plants are incubated with O<sup>18</sup> labelled water, which molecule (photosynthesis product) will become radioactive from the given options b) H<sub>2</sub>O c)  $CO_2$ d) ATP 254. The first action spectrum of photosynthesis was described by Engelman was related to a) Algae b) Mint plant c) Bacteria d) Bryophytes 255. To form one molecule of glyceraldehydes phosphate in Calvin cycle a) 9 ATP and 36 NADPH are required b) 6 ATP and 6 NADPH are required c) 3 ATP and 3 NADPH are required d) 9 ATP and 6 NADPH are required 256. Products of light reaction are ATP and  $O_2$ , of these,  $B_{\rm ...}$  diffuses out of the chloroplast, while ATP and NADPH are used to derive the process leading to the synthesis of food more accurately, ...C..., What does the blanks A-C refers here? a) A-NADP; B-O2; C-lipid b) A-NADPH<sub>2</sub>; B-O<sub>2</sub>; C-amino c) A-NAD+; B-O<sub>2</sub>; C-sugars d) A-NADPH +  $H^+$ ; B-O<sub>2</sub>; C-sugars 257. Light compensation point is the point where a) Gaseous exchange occurs in photosynthesis b) Gaseous exchange do not occur in photosynthesis c) Gaseous exchange reduce in photosynthesis d) Light intensity become appropriate for photosynthesis 258. During the dark reaction, the acceptor of CO<sub>2</sub> is a) NADPH<sub>2</sub> b) RuBP c)  $H_2O$ d)  $CO_2$ 259. During photorespiration, the oxygen consuming reaction(s) occur in a) Stroma of chloroplasts and mitochondria b) Stroma of chloroplasts and peroxisomes c) Grana of chloroplasts and peroxisomes d) Stroma of chloroplasts 260. Which one of the following concerns Photophosphorylation? b) AMP + Inorganic  $PO_4 \xrightarrow{Light energy} ATP$ a) ADP + Inorganic  $PO_4 \rightarrow ATP$ d)  $ADP + Inorganic PO_4 \xrightarrow{Light energy} ATP$ c)  $ADP + AMP \xrightarrow{Light \, energy} ATP$ 261. In an experiment, chloroplasts were made acidic by soaking them in acidic solution. What will happen if this chloroplast is transferred to a solution having basic pH? a) ATP formation takes place b) No ATP formation takes place c) NAD formation takes place d) Sugar formation takes place 262. Choose the correct combination of labeling the carboxydrate molecule involved in the Calvin cycle.



- a) A-RuBP, B-Triose phosphate, C-PGA
- b) A-PGA, B-RuBP, C-Triose phosphate
- c) A-PGA, B-Triose phosphate, C-RuBP
- d) A-RuBP, B-PGA, C-Triose phosphate
- 263. If the light becomes unavailable during photosynthesis then
  - a) Immediately biosynthetic process stops
  - b) Biosynthetic phase does not stops
  - c) Biosynthetic phase stopes forever

|      | d) Biosynthetic phase con                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                              |                                |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| 264. | 4. I. In photosynthesis, the proton accumulation is towards the inside of membrane of thylakoid                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | II. In respiration, proton accumulation occurs in the inter membrane space of the mitochondria                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | Select the correct option                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | a) Statement I is incorrect                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | b) Statement II is incorrec                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | c) Both Statement I and St                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | d) Both Statement I and St                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
| 265. | Chloroplasts without gran                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | a) Bundle-sheath cells of 0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | b) Mesophyll cells of C <sub>4</sub> -pl                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | c) Bundle-sheath cells of 0                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | d) Mesophyll cells of all pl                                                                                                                          | ants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                |
| 266. | PGA, the first carbon dioxi                                                                                                                           | de fixation product was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | firstly discovered in          |                                |
|      | a) Bryophytes                                                                                                                                         | b) Pteridophytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c) Angiosperms                 | d) Alga                        |
| 267. | Liberation of oxygen when                                                                                                                             | n green cells in water ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e exposed to sunlight in pr    | esence of suitable acceptor is |
|      | called                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | a) Arnon's reaction                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Emerson's enhance           | effect                         |
|      | c) Blackman's reaction                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d) Hill's reaction             |                                |
| 268. | Fixation of one molecule of                                                                                                                           | of CO <sub>2</sub> requires how muc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ch (in $C_4$ -plants). ATP and | NADPH respectively             |
|      | a) 5/2                                                                                                                                                | b) 2/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) 2/3                         | d) 3/2                         |
| 269. | In half leaf experiment, a p                                                                                                                          | part of a leaf is enclosed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in a test tube containing K    | OH soaked cotton, while the    |
|      | other half is exposed to air                                                                                                                          | r and then setup is place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed in light for sometime. It   | was latter found that part of  |
|      | leaf which was exposed to                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | -                              |
|      | a) Light is essential for ph                                                                                                                          | The state of the s | P                              |                                |
|      | b) Oxygen is liberated in p                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n KOH soaked leaf, starch s    | synthesis do not occurs as     |
|      |                                                                                                                                                       | and it become unavailal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |                                |
|      | Carbon dioxide is essen                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | because in KOH soaked lea      | f, starch synthesis do not     |
|      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ilable for photosynthesis      | ,                              |
| 270. | Is a CAM plant.                                                                                                                                       | J,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 7                            |                                |
|      | a) Maize                                                                                                                                              | b) Pineapple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | c) Onion                       | d) Pea                         |
| 271. | Every CO <sub>2</sub> molecule enter                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                              | ,                              |
|      | a) 2 molecule of NADPH a                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                |
|      | b) 2 molecule of NADPH a                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | c) Variable amount of ATI                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T TES IMACION                  |                                |
|      | d) Only NADPH                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
| 272  | Proton gradient is very im                                                                                                                            | mortant across the mem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ihrane hecause                 |                                |
| 2,2  | a) Building up of proton g                                                                                                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ibrane because                 |                                |
|      |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | towards lumen side of thy      | lakoid membrane                |
|      | b) Building up of proton gradient increase the pH towards lumen side of thylakoid membrane<br>c) Breakdown of proton gradient release CO <sub>2</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                                |
|      | d) Breakdown of proton g                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                                |
| 272  | The first acceptor of electrons                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aranhyll malagula of           |                                |
| 2/3  |                                                                                                                                                       | ions irom an excited cin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or opiny ir inolecule of       |                                |
|      | Photo system-II is                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h) Ivon auluhun nuotoi         |                                |
|      | a) Cytochrome                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b) Iron-sulphur protei         | П                              |
| 274  | c) Ferredoxin                                                                                                                                         | ial fauth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) Quinine                     |                                |
| Z/4. | Substance which is essent                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | d) IIbiaiia                    |
| 275  | a) Cytochrome Which of the following is:                                                                                                              | b) RuBisCo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | c) Plastocyanin                | d) Ubiguinine                  |
| 115  | AN UTCH OF THE TOHOWHING IS 3                                                                                                                         | t 4-carnon compound/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                                |

|                                                                         |                                         |                                                     | Opius Luucutioi                                   |  |
|-------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------|--|
| a) Oxaloacetic acid                                                     |                                         | b) Phosphoglyceric acid                             |                                                   |  |
| c) Ribulose bisphosphate                                                |                                         |                                                     | d) Phosphoenol pyruvate                           |  |
| 276. A graph that plots the ra                                          |                                         | ed to glucose <i>versus</i> the wa                  | avelength of light                                |  |
| illuminating a leaf is cal                                              |                                         |                                                     |                                                   |  |
| a) An absorption spectr                                                 | rum                                     | b) An adsorption spectr                             | um                                                |  |
| c) Pigment kinetics                                                     |                                         | d) An action spectrum                               |                                                   |  |
| 277. Water stress makes plan                                            | nt leavesA thus,B th                    | e surtace area of leaves an                         | d their metabolic activity as                     |  |
| well                                                                    |                                         |                                                     |                                                   |  |
| Here A and B refer to                                                   | L) A 14 D -1                            | -) A C-11 D J                                       | J) A C-II D :                                     |  |
| a) A-wilt, B-increases                                                  | b) A-wilt, B-decreases                  | c) A-fall, B-decreases                              | d) A-fall, B-increases                            |  |
| 278. Which plant performs p                                             |                                         |                                                     | 4) C                                              |  |
| <ul><li>a) C<sub>2</sub></li><li>279. During photorespiration</li></ul> | b) $C_3$                                | c) C <sub>4</sub>                                   | d) $C_5$                                          |  |
| a) Mitochondria                                                         | b) Glyoxysome                           | c) Peroxisome                                       | d) Chloroplast                                    |  |
| 280. The chemical formula of                                            |                                         | c) i ei oxisoine                                    | u) Gilloropiast                                   |  |
| a) $(C_6H_{10}O_5)_n$                                                   | b) $(C_6H_{12}O_6)_n$                   | c) C <sub>12</sub> H <sub>22</sub> O <sub>11</sub>  | d) CH <sub>3</sub> COOH                           |  |
| 281. Emerson effect explain                                             |                                         | c) c <sub>12</sub> 11 <sub>22</sub> 0 <sub>11</sub> | a) dii3doon                                       |  |
| a) Transpiration                                                        | the phenomenon of                       | b) Absorption of water l                            | ny roots                                          |  |
| c) Photosynthesis                                                       |                                         | d) Respiration                                      | <i>y</i> 100ts                                    |  |
| 282. Which fractions of the v                                           | isible spectrum of solar rad            |                                                     | rbed by carotenoids of the                        |  |
| higher plants?                                                          | op                                      | printing allow                                      |                                                   |  |
| a) Red and violet                                                       | b) Violet and blue                      | c) Blue and green                                   | d) Green and red                                  |  |
| 283. Photosynthesis in C <sub>4</sub> -pla                              |                                         |                                                     |                                                   |  |
|                                                                         | e the initial carbon dioxide            | b) The primary fixation                             |                                                   |  |
| acceptors                                                               | ~                                       | mediated via PEP car                                |                                                   |  |
| -                                                                       | CO <sub>2</sub> into bundle sheath cell |                                                     | -                                                 |  |
| 284. CAM-plant among the fo                                             |                                         | CATTONI                                             |                                                   |  |
| a) Maize                                                                | b) <i>Kalanchoe</i>                     | c) Sugarcane                                        | d) Wheat                                          |  |
| 285. Identify the 5-C compou                                            | and from the given option               |                                                     |                                                   |  |
| a) RuBP                                                                 | b) OAA                                  | c) 3PGA                                             | d) NADPH <sub>2</sub>                             |  |
| 286. The functions of chlorop                                           | olast of membrane system is             | S                                                   |                                                   |  |
| <ul><li>a) Trapping of light ene</li></ul>                              | rgy                                     | b) Synthesis of ATP                                 |                                                   |  |
| c) Synthesis of NADPH                                                   |                                         | d) All of these                                     |                                                   |  |
| 287. Photophosphorylation of                                            |                                         |                                                     | ==                                                |  |
| a) Light                                                                | b) Heat                                 | c) AMP                                              | d) NAD                                            |  |
| 288. Cyclic phosphorylation                                             |                                         |                                                     |                                                   |  |
| a) Wavelength beyond 8                                                  |                                         | b) Wavelength beyond 6                              |                                                   |  |
| c) Wavelength below 68                                                  |                                         | d) Wavelength below 50                              | 00 nm                                             |  |
| 289. If there is mutation in cy                                         |                                         |                                                     |                                                   |  |
| •                                                                       | of electrons from PS-II to P            |                                                     |                                                   |  |
| •                                                                       | t of electrons from PS-I to P           | 2-11                                                |                                                   |  |
| c) Inhibit the photolysis                                               |                                         |                                                     |                                                   |  |
| d) Promote ATP format                                                   |                                         | on.                                                 |                                                   |  |
| 290. Photosynthesis is correct                                          |                                         |                                                     | 0 + 60 + 611 0                                    |  |
| a) $6CO_2 + 12H_2O \rightarrow C_6$                                     |                                         | b) $6CO_2 + 6H_2O \rightarrow C_6H_2$               |                                                   |  |
| c) $6CO_2 + 6H_2O \rightarrow C_6H$<br>291. Which of the following $6$  | == = =                                  | d) $2CO_2 + 12H_2O \rightarrow C_6H_2$              | 1 <sub>12</sub> 0 <sub>6</sub> + 200 <sub>2</sub> |  |
| a) Ca and CI                                                            | b) Mn and CI                            | c) Zn and I                                         | d) Cu and Fe                                      |  |
| 292. The electrons in the rea                                           | •                                       | cj zmanu i                                          | aj da ana i c                                     |  |
| I I II CICCII OII III III CIC I CA                                      | commo or ro rail                        |                                                     |                                                   |  |

WEB: WWW.GPLUSEDUCATION.ORG PHONE NO: 8583042324 Page | 23

**GPLUS EDUCATION** 

|                                                                                                                     | opius Luucution                                                                                             |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| a) Excited simultaneous with PS-II                                                                                  | b) Excited simultaneously with P <sub>680</sub>                                                             |
| c) Excited simultaneously with P <sub>700</sub>                                                                     | d) Either (a) or (b)                                                                                        |
| 293. In plants, glycolate metabolism takes place in                                                                 |                                                                                                             |
| a) Low concentration of carbon dioxide                                                                              | b) High concentration of oxygen                                                                             |
| c) Low concentration of oxygen                                                                                      | d) Absence of oxygen                                                                                        |
| 294. Chloroplast align themselves in the mesophyll cell is                                                          | n such away that their flat surface are                                                                     |
| a) Antiparallel to the cell wall                                                                                    | b) Perpendicular to the cell wall                                                                           |
| c) Parallel to the cell wall                                                                                        | d) Middle in the cell                                                                                       |
| 295. How many molecules of RuBP are required to produ                                                               | uce 20 molecules of serine in photorespiration?                                                             |
| a) 20 b) 40                                                                                                         | c) 60 d) 80                                                                                                 |
| 296. With reference to three Calvin cycles, which of the g                                                          |                                                                                                             |
| I. How many gross PGAL molecules are produces?                                                                      |                                                                                                             |
| II. Total, how many ATP molecules are required for                                                                  | synthesis of PGAL molecules?                                                                                |
| II. Total, how many NADPH <sub>2</sub> molecules are required                                                       |                                                                                                             |
| a) I-3PGAL, II-3 ATP, III-3 NADPH <sub>2</sub>                                                                      | b) I-6 PGAL, II-6 ATP, III-6 NADPH <sub>2</sub>                                                             |
| c) I-18 PGAL, II-18 ATP, III-18 NADPH <sub>2</sub>                                                                  | d) I-9 PGAL, II-9 ATP, III-9 NADPH <sub>2</sub>                                                             |
| 297. Which of the following statements regarding C <sub>4</sub> -pla                                                | =                                                                                                           |
| a) The primary CO <sub>2</sub> acceptor is a 5-carbon molecule                                                      |                                                                                                             |
| b) The initial carboxylation reaction occurs in Meso                                                                |                                                                                                             |
| c) The leaves that fix CO <sub>2</sub> have two cell types                                                          | phyn                                                                                                        |
| d) The Mesophyll cells lack Rubisco enzyme                                                                          |                                                                                                             |
| 298. CAM pathway is observed in                                                                                     |                                                                                                             |
| a) Pineapple b) Maize                                                                                               | c) Sunflower d) Sugarcane                                                                                   |
| 299. Scientist believed that since the first product was                                                            | _ ,                                                                                                         |
| Total 1 and 1                                                                                                       | a 2-carbon compound before they discoveredC                                                                 |
| carbon compound (RuBP).                                                                                             | a 2-carbon compound before they discoveredc                                                                 |
| Complete the given statement with the correct com                                                                   | hination of ontions                                                                                         |
| a) A-C <sub>3</sub> ; B-2, C-5 b) A-C <sub>3</sub> ; B-5, C-2                                                       |                                                                                                             |
| 300. I. Photosystem-I is a photosynthetic pigment system                                                            |                                                                                                             |
| II. Photosystem-II is a photosynthesis pigment locat                                                                |                                                                                                             |
| Identify wheather the given statements are correct                                                                  |                                                                                                             |
| a) Statement I is correct, while II is incorrect                                                                    | <del>-</del> -                                                                                              |
|                                                                                                                     | <ul><li>b) Statement II is correct, while I is incorrect</li><li>d) Both statements are incorrect</li></ul> |
| <ul><li>c) Both statements are correct</li><li>301. Biosynthetic phase is called as dark reaction because</li></ul> |                                                                                                             |
| a) It depends on the light reaction                                                                                 |                                                                                                             |
| , ,                                                                                                                 | b) It does not depends on the light reaction                                                                |
| c) It does not depends on NADPH                                                                                     | d) It does not depends on ATP                                                                               |
| 302. What percentage of solar radiation that hits the ear                                                           |                                                                                                             |
| a) 92% b) 2%                                                                                                        | c) 42% d) 22%                                                                                               |
| 303. CO <sub>2</sub> released in bundle sheath is used in the                                                       | 1) C1                                                                                                       |
| a) C <sub>4</sub> -cycle                                                                                            | b) C <sub>3</sub> -cycle                                                                                    |
| c) Respiration                                                                                                      | d) Sugar break down processes                                                                               |
| 304. Photophosphorylation is the                                                                                    |                                                                                                             |
| a) Formation of ADP in the presence of light                                                                        |                                                                                                             |
| b) Formation of ATP in the presence of chemicals                                                                    |                                                                                                             |
| c) Formation of ATP in the presence of light                                                                        |                                                                                                             |
| d) Formation of ATP in the presence of reducing ago                                                                 | ents                                                                                                        |
| 305. During photosynthesis,                                                                                         |                                                                                                             |
| a) Oxygen evolved comes from carbon dioxide                                                                         |                                                                                                             |
| b) ATP is formed                                                                                                    |                                                                                                             |

|                                                                             |                                  | Opius Luucutioi             |
|-----------------------------------------------------------------------------|----------------------------------|-----------------------------|
| c) ATP is not formed                                                        |                                  |                             |
| d) Water is required as medium but it does not take p                       | part in photosynthesis           |                             |
| 306. Cytochrome oxidase is a/an                                             | ) D                              | 1) ()                       |
|                                                                             | c) Proenzyme                     | d) Coenzyme                 |
| 307. Electrons are transferred by splitting of $H_2O$ through               |                                  | and reduces                 |
|                                                                             | b) NADPH to H <sup>+</sup>       |                             |
| c) NADP <sup>+</sup> to NADPH + H <sup>+</sup>                              | d) NAD to NADPH + H <sup>+</sup> |                             |
| 308. Cytochrome oxidase contain                                             | ) II                             | n a                         |
| a) Fe b) Mg                                                                 | c) Zn                            | d) Cu                       |
| 309. Basic features of Kranz anatomy of $C_4$ -plant is presen              |                                  |                             |
|                                                                             | b) Chloroplast in Mesophy        | =                           |
| c) Typical granal chloroplasts in bundle sheath cells                       |                                  |                             |
| and rudimentary chloroplasts in mesophyll cells                             | and typical granal chlor         | coplasts in mesophyll cells |
| 310. The first product of $CO_2$ fixation in $C_4$ pathway is               | ) P.C.                           | 13.4                        |
|                                                                             | c) PGA                           | d) Inorganic acid           |
| 311. Photochemical reactions in the chloroplasts are direc                  | tly involved in                  |                             |
| a) Fixation of carbon dioxide                                               |                                  |                             |
| b) Synthesis of glucose and starch                                          |                                  |                             |
| c) Formation of phosphoglyceric acid                                        | 4 MD                             |                             |
| d) Photolysis of water and phosphorylation of ATP to                        | ATP                              |                             |
| 312. Which crop utilizes solar energy most efficiently?                     | 2 747                            | D. D.                       |
|                                                                             | c) Wheat                         | d) Rice                     |
| 313. I. CO <sub>2</sub> is assimilated into sugars                          |                                  |                             |
| II. RUBP is regenerated                                                     |                                  |                             |
| III. ATP and NADPH are formed                                               |                                  |                             |
| Select the correct option in context to Calvin cycle                        | a) Land III                      | d) I II and III             |
|                                                                             | c) I and III                     | d) I, II and III            |
| 314. Majority of energy carrier molecules are oxidised or r                 |                                  | .a.ulaat                    |
| a) Nucleus                                                                  | b) Mitochondria and chlor        | opiast                      |
| c) Nucleus                                                                  | d) Golgi body                    |                             |
| 315. The water splitting complex is associated with a) PS-I b) PS-II        | c) Carotenoid                    | d) Vanthanhyll              |
| a) PS-I b) PS-II 316. Photosystem I (PS-I) and Photosystem-II (PS-II) are r | •                                | d) Xanthophyll              |
|                                                                             | b) According to their mole       | oular waight                |
|                                                                             | d) In the sequence of their      | <del>-</del>                |
| 317. Asymmetric labeling of glucose phosphate formed in                     | •                                | Constituents                |
|                                                                             | c) Gibb's effect                 | d) Dicken's effect          |
| 318. Protons produced by the splitting of water in light rea                |                                  | -                           |
| reaction of photosynthesis accumulates within the                           | action of photosynthesis at      | cumulates within the        |
| - · · · · · · · · · · · · · · · · · · ·                                     | b) Intermembrane of chlo         | ronlast                     |
| c) Stroma of chloroplast                                                    | d) Outside the lumen of th       | -                           |
| 319. The molecule present in the reaction centre of photos                  | •                                | iy lakolas                  |
|                                                                             | c) Chlorophyll- <i>c</i>         | d) Chlorophyll- <i>d</i>    |
| 320. Photorespiration is the light dependent reaction in w                  | = = =                            | a) dinorophyn a             |
|                                                                             | b) Oxygen and release of I       | H <sup>+</sup> takes place  |
|                                                                             | d) Oxygen and release of A       | _                           |
| 321. Which photosynthetic pigment is called universal pho                   |                                  | tames prace                 |
| · · · · · · · · · · · · · · · · · · ·                                       | c) Chlorophyll- $c$              | d) Chlorophyll- <i>d</i>    |
| 322. I. PS-I has more chlorophyll- <i>a</i> than chlorophyll- <i>b</i>      | ) · F/                           | , <u>F</u> J                |
|                                                                             |                                  |                             |

|                                                                                | Opius Luucutioi                                                                |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| II. PS-II has more chlorophyll- $b$ than chlorophyll- $a$                      |                                                                                |
| Choose the correct option                                                      |                                                                                |
| a) I statement is wrong, II is right                                           | b) II statement is wrong, I is right                                           |
| c) Bot statements are wrong                                                    | d) Both statements are right                                                   |
| 323. Photosynthesis is a                                                       |                                                                                |
| a) Physico-chemical process                                                    | b) Physical process                                                            |
| c) Chemical process                                                            | d) Constructive process                                                        |
| 324. The $C_4$ -plants are photosynthetically more efficient to                |                                                                                |
| a) The carbon dioxide compensation point is more                               | b) Carbon dioxide generated during                                             |
|                                                                                | photorespiration is trapped and recycled through PEP carboxylase               |
| c) The carbon dioxide efflux is not prevented                                  | d) They have more chloroplasts                                                 |
| 325. We are created by chloroplast. This statement sugge                       |                                                                                |
|                                                                                | st the idea                                                                    |
| a) All the life form possesses chloroplast                                     |                                                                                |
| b) All the life form depend on photosynthesis                                  |                                                                                |
| c) All the life form is plant                                                  |                                                                                |
| d) Plants are the first organism on earth                                      |                                                                                |
| 326. Which of the following characteristics out of A, B and                    | I C are exhibited by $C_4$ -plants?                                            |
| V. Kranz anatomy                                                               | ,                                                                              |
| VI. The product of photosynthesis is oxaloacetic acid                          |                                                                                |
| VII. Both PEP carboxylase and ribulose-bisphosphate                            |                                                                                |
| a) Only A and B, but not C                                                     | b) Only B and C, but not A                                                     |
| c) Only A and C, but not B                                                     | d) All A, B and C                                                              |
| 327. Hexose monophosphate pathway takes place in                               |                                                                                |
| a) Endoplasmic reticulum                                                       | b) Cristae                                                                     |
| c) Cytoplasm                                                                   | d) Mitochondrial matrix                                                        |
| 328. The energy required to hydrolyse water during phot                        | A 1 1 / 3 B I                                                                  |
| a) Reduced chlorophyll b) Proton gradient                                      | c) Oxidised chlorophyll d) ATP                                                 |
| 329. Chloroplast dimorphism is a characteristic feature o                      | f                                                                              |
| a) Plants with Calvin cycle                                                    |                                                                                |
| b) C <sub>4</sub> -plants                                                      |                                                                                |
| c) All plants                                                                  |                                                                                |
| d) Only in algae                                                               |                                                                                |
| 330. The trapping centre of light energy in photosystem-l                      | is                                                                             |
| a) P <sub>660</sub> b) P <sub>700</sub>                                        | c) P <sub>680</sub> d) P <sub>630</sub>                                        |
| 331. ATP and NADPH produced in light reaction by the m                         | ovement of electrons in ETC are used immediatly for                            |
| a) Oxidation of carbohydrate                                                   | b) Synthesis of sugar                                                          |
| c) Reduction of carbon dioxide                                                 | d) Both (b) and (c)                                                            |
| 332. Electrons which gets excited in PS-I must replaced. T                     | These replacement ultimately come from                                         |
| a) ATP b) H <sub>2</sub> O                                                     | c) PS-II d) NAD                                                                |
| 333. Select the correct pathway for electron transport du                      | ring photosynthesis                                                            |
| a) $CO_2 \rightarrow RUBP \rightarrow Glucose$ - ATP                           | b) $H_2O \rightarrow PS-I \rightarrow PS-II \rightarrow NADPH \rightarrow H^+$ |
| c) $H_2O \rightarrow PS-II \rightarrow PS-I \rightarrow NADPH \rightarrow H^+$ | d) $H_2O \rightarrow PS-II \rightarrow PS-I \rightarrow ATP$                   |
| 334. Photorespiration in C <sub>3</sub> -plants starts from                    |                                                                                |
| a) Phosphoglycerate b) Phosphoglycolate                                        | c) Glycerate d) Glycine                                                        |
| 335. Photosynthesis is                                                         |                                                                                |
| I. Endergonic process                                                          |                                                                                |
| II. Exergonic process                                                          |                                                                                |
| III. Chemical process                                                          |                                                                                |

| IV. Physical process                                             |                            |                      |
|------------------------------------------------------------------|----------------------------|----------------------|
| Select the correct option                                        |                            |                      |
| a) II, III and IV b) I, III and IV                               | c) I, II and IV            | d) I, II and III     |
| 336. Compensation point refers to                                |                            |                      |
| a) Little photosynthesis                                         | b) Beginning of phot       | tosynthesis          |
| c) Rate of photosynthesis equals to the rate of                  | d) None of the above       | e                    |
| respiration                                                      | •                          |                      |
| 337. In Z-scheme of light reaction the, participating pi         | gment system are           |                      |
| I. PS-I II. PS-II III. PS-III                                    |                            |                      |
| IV. Carotenoid and xanthophyll                                   |                            |                      |
| Choose the correct option                                        |                            |                      |
| a) I and II b) I, II and III                                     | c) I, III and IV           | d) II and III and IV |
| 338. Function/s of accessory pigments is/are                     | •                          | -                    |
| I. They enable wider range of wavelength of inco                 | ming light for photosynth  | nesis                |
| II. They absorb light and transfer the energy to cl              |                            |                      |
| III. They protect reaction centre from photo-oxid                |                            |                      |
| Select the correct option                                        |                            |                      |
| a) I and II b) II and III                                        | c) Only I                  | d) I, II and III     |
| 339. In CAM-plants, carbon dioxide required for photo            | , ,                        |                      |
| a) Day time through the lenticels                                | J                          | , ,                  |
| b) Night through the stomata, which are kept ope                 | en                         |                      |
| c) Day time when the stomata are open                            |                            |                      |
| d) Night when the hydathodes are open                            | >                          |                      |
| 340. Water is                                                    |                            |                      |
| a) Produced in dark reaction                                     | b) A reactant in light     | t reaction           |
| c) Both (a) and (b)                                              | d) Involve nowhere         |                      |
| 341. In $C_3$ plant, when $O_2$ concentration is more, the $C_3$ | · ·                        |                      |
| a) 2 molecules of PGA                                            | ICATION                    | 3                    |
| b) 2 molecules of phosphoglycerate                               | / 6/11/011                 |                      |
| c) 2 molecules of phosphoglycolate                               |                            |                      |
| d) One molecule each of phosphoglycerate and p                   | hosphoglycolate            |                      |
| 342. Within the chloroplast, the chlorophyll pigments            | = = = =                    | n of                 |
| a) PS-I b) PS-II                                                 | c) PS-III                  | d) Both (a) and (b)  |
| 343. Conversion of pyruvate into PEP takes place in              | ,                          |                      |
| a) Mesophyll cell cytoplasm                                      | b) Mesophyll cell ch       | loroplast            |
| c) Bundle sheath cell chloroplast                                | d) Bundle sheath cel       | •                    |
| 344. What is the function performed by plant pigment             | =                          | 7 1                  |
| a) Absorb CO <sub>2</sub> b) Absorb O <sub>2</sub>               | c) Absorb H <sub>2</sub> O | d) Absorb light      |
| 345. A reduction in the quantity of oxygen evolution of          | -                          | _                    |
| a) Light having wavelength more than 680 nm                      | •                          | -                    |
| b) Light having wavelength less than 680 nm                      |                            |                      |
| c) Light having wavelength 560 nm                                |                            |                      |
| d) Light having wavelength less than 360 nm                      |                            |                      |
| 346. Organelles associated with photorespiration are             |                            |                      |
| a) Chloroplast, mitochondria, peroxisome                         |                            |                      |
| b) Chloroplast, mitochondria, lysosome                           |                            |                      |
| c) Mitochondria, peroxisome, centrosome                          |                            |                      |
| d) Nucleus, centrosome, peroxisome                               |                            |                      |
| 347. Stroma in the chloroplasts of higher plants conta           | in                         |                      |

| <ul><li>a) Light-independent</li><li>c) Ribosomes</li></ul> | reaction enzymes                            | <ul><li>b) Light-dependent react</li><li>d) Chlorophyll</li></ul> | ion enzymes                |
|-------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|----------------------------|
| 348. The concentration of O                                 | $\mathrm{CO}_2$ in atmosphere is between    |                                                                   |                            |
| a) 0.03-0.04%                                               | b) 300-400 ppm                              | c) 400-600 ppm                                                    | d) Either (a) or (b)       |
| 349. Red light favours the .                                | A accumulation. Blue light f                | favours theB accumula                                             | tion                       |
| Here A and B refer to                                       |                                             |                                                                   |                            |
| a) A-Starch; B-lipid                                        |                                             | b) A-lipid; B-starch                                              |                            |
| c) A-carbohydrate; B-                                       | cholestrol                                  | d) A-carbohydrate; B-pro                                          | otein                      |
| 350. Maximum number of o                                    | chloroplast are found in                    |                                                                   |                            |
| a) Root                                                     | b) Stem                                     | c) Leaves                                                         | d) Short tip               |
| 351. The net requirement of                                 | of assimilatory power for the fo            | ormation of 6 hexose mole                                         | cules in maize plant is    |
| a) 72 ATP, 48 NADPH                                         |                                             |                                                                   |                            |
| b) 90 ATP, 60 NADPH                                         |                                             |                                                                   |                            |
| c) 108 ATP, 72 NADPI                                        | ·I                                          |                                                                   |                            |
| d) 180 ATP, 72 NADPI                                        | ł                                           |                                                                   |                            |
| 352. In C <sub>3</sub> plants, the first s                  | table product of photosynthes               | is during dark reaction is                                        |                            |
| a) PGAL                                                     | b) RuBP                                     | c) PGA                                                            | d) OAA                     |
| 353. The form of pigment v                                  | vhich promotes germination is               | 3                                                                 |                            |
| a) P <sub>760</sub>                                         | b) P <sub>730</sub>                         | c) P <sub>650</sub>                                               | d) All of these            |
| 354. Who proved that oxyg                                   | en evolved in photosynthesis                | comes from water?                                                 |                            |
| a) Calvin                                                   |                                             | b) Mayer                                                          |                            |
| c) Blackman                                                 |                                             | d) Ruben, Hassid and Kar                                          | nen                        |
| 355. Compensation point re                                  | efers to                                    | P                                                                 |                            |
| a) Rate of photosynthe                                      | esis = Rate of respiration                  |                                                                   |                            |
| b) Rate of photosynthe                                      | esis = Rate of $H_2O$ splitting             |                                                                   |                            |
| c) Rate of photosynthe                                      | esis = PGA formation                        |                                                                   |                            |
| d) Rate of photosynthe                                      | esis = RuBP formation                       | LACTTAL                                                           |                            |
| 356. Living organisms have                                  | the capability of extracting er             | nergy from                                                        |                            |
| a) Reducible substanc                                       | es                                          | b) Oxidising substances                                           |                            |
| c) ADP                                                      |                                             | d) AMP                                                            |                            |
| 357. What happens to $C_4$ ac                               | cid in the bundle sheath cells?             |                                                                   |                            |
| a) Aspartic acid is dea                                     | minated                                     | b) Malic acid decarboxyla                                         | ated                       |
| c) Either (a) or (b)                                        |                                             | d) Both (a) and (b)                                               |                            |
| 358. Porphyrin is made up                                   |                                             |                                                                   |                            |
| a) One                                                      | b) Two                                      | c) Three                                                          | d) Four                    |
|                                                             | hich is light induced cyclic oxi            | dation of photosynthetic in                                       | ntermediates with the help |
| of oxygen, the substra                                      |                                             |                                                                   |                            |
| a) Glycolate                                                | b) Glucose                                  | c) Pyruvic acid                                                   | d) Acetyl Co-A             |
| 360. Non-cyclic phosphory                                   | lation occurs in                            |                                                                   |                            |
| I. stroma lamellae                                          |                                             |                                                                   |                            |
| II. grana lamellae                                          |                                             |                                                                   |                            |
| III. chloroplast membr                                      |                                             |                                                                   |                            |
| Select the correct opti-                                    |                                             |                                                                   |                            |
| a) Only I                                                   | b) II and III                               | c) I and III                                                      | d) Only II                 |
|                                                             | efficiency of carbon dioxide fix            |                                                                   |                            |
| a) Calvin cycle                                             | b) Hatch and Slack cycle                    | c) TCA cycle                                                      | d) Greater sunlight        |
|                                                             | le) is the fixation of CO <sub>2</sub> into |                                                                   |                            |
| a) Amino acid                                               | b) Cholesterol ring                         | c) Proteins                                                       | d) Organic intermediate    |
| 363 Malic acid ar acnostic                                  | acid and avaloacatic acid both              | are tound in                                                      |                            |

| a) Mesophyll cell                                                                            | b) Bundle sheath cell               |                                           |  |
|----------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|--|
| c) Bundle sheath cell wall                                                                   | d) Mesophyll cell wall              |                                           |  |
| 364. Photorespiration could easily be detected in                                            |                                     |                                           |  |
| a) C <sub>3</sub> -plants b) C <sub>4</sub> -plants                                          | c) Both (a) and (b)                 | d) None of these                          |  |
| 365. Maximum $CO_2$ fixation is done by                                                      |                                     |                                           |  |
| a) Green plants b) Phytoplanktons                                                            | c) Zooplanktons                     | d) Bacteria                               |  |
| 366. Grana is ill developed or absent in the chloroplast in                                  | n the                               |                                           |  |
| a) Stem of <i>Hydrilla</i>                                                                   | b) Leaf of sunflower                |                                           |  |
| c) Bundle sheath of sugarcane leaf                                                           | d) Mesophyll of grasses             |                                           |  |
| 367. Aldolase enzyme is present in                                                           |                                     |                                           |  |
| a) Mitochondria                                                                              | b) Chloroplast                      |                                           |  |
| c) Lysosomes                                                                                 | d) Endoplasmic reticulu             | m                                         |  |
| 368. Photosynthetic enhancement with flashing light wa                                       |                                     |                                           |  |
| a) Benson and Calvin                                                                         | b) Hill and Calvin                  |                                           |  |
| c) Hatch and Slack                                                                           | d) Emerson and Arnold               |                                           |  |
| 369. In C <sub>3</sub> cycle for the fixation of every CO <sub>2</sub> molecules, t          |                                     |                                           |  |
| a) 3 ATP and 2 NADPH <sub>2</sub> b) 2 ATP and 2 NADPH <sub>2</sub>                          | c) 2 ATP and 3 NADPH <sub>2</sub>   | d) 3 ATP and 3 NADPH <sub>2</sub>         |  |
| 370. Synthesis of one molecule of glucose requires                                           |                                     |                                           |  |
| a) 6CO <sub>2</sub> , 18 ATP and 12 NADPH                                                    | b) 6CO <sub>2</sub> , 12 ATP and 18 |                                           |  |
| c) 6CO <sub>2</sub> , 30 ATP and 12 NADPH                                                    |                                     | d) 6CO <sub>2</sub> , 38 ATP and 12 NADPH |  |
| 371. Main biosynthetic pathway for CO <sub>2</sub> fixation in C <sub>4</sub> -pl            |                                     |                                           |  |
| a) C <sub>4</sub> pathway b) C <sub>3</sub> pathway                                          | c) C <sub>2</sub> pathway           | d) Both (a) and (b)                       |  |
| 372. I. In biosynthetic phase (C <sub>3</sub> -cycle), enzymes are pre                       |                                     |                                           |  |
| II. C <sub>3</sub> and C <sub>4</sub> -cycle are two parts of biosynthetic pha               |                                     |                                           |  |
| Identify wheather the given statement are correct of                                         |                                     |                                           |  |
| a) Both I and II are correct                                                                 | b) Both I and II are incorrect      |                                           |  |
| c) I is correct, II is incorrect                                                             | d) II is correct, I is incorr       | rect                                      |  |
| 373. Wavelength of visible light/PAR is                                                      | PALION                              | N 400 000                                 |  |
| a) 200-400 nm b) 700-900 nm                                                                  | c) 400-700 nm                       | d) 100-200 nm                             |  |
| 374. In Hatch and Slack pathway,                                                             |                                     |                                           |  |
| a) Chloroplasts are of same type                                                             |                                     |                                           |  |
| <ul> <li>b) Kranz anatomy occurs where mesophyll have sm<br/>chloroplasts</li> </ul>         |                                     |                                           |  |
| <ul> <li>c) Kranz anatomy occurs where mesophyll have sn<br/>agranal chloroplasts</li> </ul> | nall chloroplasts whereas b         | undle sheath have larger                  |  |
| d) Kranz anatomy where mesophyll cells are diffuse                                           | ed                                  |                                           |  |
| 375. Photorespiration takes place only in                                                    |                                     |                                           |  |
| a) Lysosomes of plant cell                                                                   | b) Green parts of the pla           | nt                                        |  |
| c) Mitochondria of plant cell                                                                | d) None of the above                |                                           |  |
|                                                                                              |                                     |                                           |  |

376.





In the above schematic diagram, which is plastocyanin?

a) C

b) D

d) B

377. Photochemical reactions in the chloroplast are directly involved in

- a) Photolysis of water and formation of ATP
- b) Formation of PGA

c) Synthesis of starch and lipid

d) Fixation of PEP

378. During non-cycle photophosphorylation, in which of the following  $4e^-$  produced through photolysis will enter?

a) PS-II

b) PC

c) PO

d) PS-I

379. Most abundant protein of biological world is

- a) Rubisco
- b) Ligase
- c) Permease
- d) RuBP

380. Core of chlorophyll is formed by

a) Iron

- b) Manganese
- c) Methyl group
- d) Magnesium

381. Ammonia release from

- a) Photorespiration
- b) Dark respiration

d) All of these

382. Accessory pigments absorb light and transfer it to

- a) Chlorophyll-*b*
- b) Chlorophyll-a
- c) Xanthophyll
- d) Carotenoids

383. Formation of ATP in mitochondria is called

- a) Mitochondria
- c) Oxidative phosphorylation
- b) Hydrolysis d) Photophosphorylation

384. Raphides are crystals of

- a) Calcium carbonate
- c) Magnesium carbonate

- b) Calcium oxalate
- d) Magnesium oxalate

385. Nucleus/core of the chlorophyll contains

a) Fe

b) Mn

c) Mg

d) CH<sub>3</sub>

386.  $(C_5H_{10}O_5)_n$  is the formula of

- a) Protein
- b) Fat

c) Lipid

d) Carbohydrate

387. C<sub>4</sub>- plants differ from C<sub>3</sub>-plants in respect to

- a) Number of CO2 molecules used
- b) Substrate, which accept the CO<sub>2</sub> molecules
- c) The final product
- d) Number of ATP formed

388. ATP synthesis is linked to

- a) Development of pressure gradient across membrane
- b) Development of osmotic gradient across membrane
- c) Development of proton gradient across membrane
- d) Development of electron gradient across membrane

|                                                                                                                                                 |                                                                           |                                                        | opius Luucutio                                |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|--|--|--|
| 389. Which of the following is forme                                                                                                            |                                                                           |                                                        |                                               |  |  |  |
|                                                                                                                                                 | nosphoglycolate                                                           | c) NADPH                                               | d) ATP                                        |  |  |  |
| 390. Photosynthesis is maximum in                                                                                                               |                                                                           | 10 D1 - C-11 11 1-2                                    | C.1.4                                         |  |  |  |
| a) Green light                                                                                                                                  |                                                                           | b) Blue followed by red right                          |                                               |  |  |  |
| c) Red followed by blue light                                                                                                                   | t il-i-l C                                                                | d) Blue light                                          |                                               |  |  |  |
| 391. Large number of chloroplast are                                                                                                            | =                                                                         | =                                                      | 4) Callanall                                  |  |  |  |
|                                                                                                                                                 | a) Parenchymatous cell b) Mesophyll cell c) Peroxisomal cell d) Cell wall |                                                        |                                               |  |  |  |
|                                                                                                                                                 | 392. What is common between chloroplasts, chromoplasts and leucoplasts?   |                                                        |                                               |  |  |  |
| <ul><li>a) Presence of pigments</li><li>b) Possession of thylakoids and grana</li></ul>                                                         |                                                                           |                                                        |                                               |  |  |  |
| c) Storage of starch, proteins ar                                                                                                               | -                                                                         |                                                        |                                               |  |  |  |
| d) Ability to multiply by a fissio                                                                                                              | =                                                                         |                                                        |                                               |  |  |  |
| 393. Which of the following is true fo                                                                                                          | =                                                                         |                                                        |                                               |  |  |  |
| a) Reduction of CO <sub>2</sub> and water                                                                                                       |                                                                           | b) Oxidation of CO <sub>2</sub> and w                  | vater                                         |  |  |  |
| c) Reduction of CO <sub>2</sub> and oxidation of water                                                                                          |                                                                           | d) Oxidation of CO <sub>2</sub> and reduction of water |                                               |  |  |  |
| 394. RuBisCo is found in                                                                                                                        |                                                                           |                                                        |                                               |  |  |  |
| a) Cytoplasm b) N                                                                                                                               | ucleus                                                                    | c) Mitochondria                                        | d) Chloroplast                                |  |  |  |
| 395. In C <sub>4</sub> -plants the bundle sheath of                                                                                             | cells                                                                     |                                                        |                                               |  |  |  |
| a) Have thin walls to facilitate gaseous exchange                                                                                               |                                                                           |                                                        |                                               |  |  |  |
| b) Have large intercellular spac                                                                                                                | b) Have large intercellular spaces                                        |                                                        |                                               |  |  |  |
| c) Are rich in PEP carboxylase                                                                                                                  |                                                                           |                                                        |                                               |  |  |  |
| d) Have a high density of chlore                                                                                                                |                                                                           |                                                        |                                               |  |  |  |
| 396. Find out the reason that creates                                                                                                           |                                                                           |                                                        |                                               |  |  |  |
|                                                                                                                                                 | alvin cycle                                                               | c) Glycolysis                                          | d) Pressure of cuticle                        |  |  |  |
| 397. ATPase has                                                                                                                                 |                                                                           | 1244 1 141 1 141 1 1 1 1 1 1 1 1 1 1 1 1               |                                               |  |  |  |
| a) Channel that allows H <sup>+</sup> diffusion                                                                                                 |                                                                           | b) Has channel that allows electron diffusion          |                                               |  |  |  |
| Channel that allows diffusion $O_2$ molecule d) Channel that allows $CO_2$ molecule diffusion                                                   |                                                                           |                                                        |                                               |  |  |  |
| 398. In dark reaction, regeneration of                                                                                                          |                                                                           |                                                        |                                               |  |  |  |
|                                                                                                                                                 | molecule of ATP                                                           | c) 3 molecule of ATP                                   | d) 4 molecule of ATP                          |  |  |  |
| 399. Rubisco has the active site that                                                                                                           |                                                                           |                                                        | I) NO                                         |  |  |  |
| a) $CO_2$ b) $O_2$                                                                                                                              |                                                                           | c) Either (a) or (b)                                   | d) NO <sub>2</sub>                            |  |  |  |
| 400. RuBP + $CO_2 \xrightarrow{\text{Rubisco}} x$ . In the given                                                                                |                                                                           |                                                        |                                               |  |  |  |
| Identify $x$ in the given                                                                                                                       |                                                                           |                                                        |                                               |  |  |  |
|                                                                                                                                                 | × 3 PGA                                                                   | c) $2 \times 4$ PGA                                    | d) 2 × 1 PGA                                  |  |  |  |
| 401. I. Cyclic photophosphorylation needs PS-I and PS-II                                                                                        |                                                                           |                                                        |                                               |  |  |  |
| II. Cyclic photophosphorylation produced NADPH + H <sup>+</sup> and ATP                                                                         |                                                                           |                                                        |                                               |  |  |  |
| III. Cyclic photophosphorylation involves H <sub>2</sub> O                                                                                      |                                                                           |                                                        |                                               |  |  |  |
| IV. Electrons are recycled in cyclic photophosphorylation Identify the correct and incorrect statement and select the option accordingly        |                                                                           |                                                        |                                               |  |  |  |
| a) I, II and III are incorrect, IV in correct b) I, II and IV are incorrect, III is correct                                                     |                                                                           |                                                        |                                               |  |  |  |
|                                                                                                                                                 |                                                                           |                                                        | d) IV, III and Ii are incorrect, I in correct |  |  |  |
| c) I, II and III are incorrect, II in correct d) IV, III and Ii are incorrect, I in correct 402. Which statement about photosynthesis is false? |                                                                           |                                                        |                                               |  |  |  |
| a) The electron carriers involved in photophosphorylation are located on the thylakoid membranes                                                |                                                                           |                                                        |                                               |  |  |  |
| b) Photosynthesis is a redox process, in which water is oxidized and carbon dioxide is reduced                                                  |                                                                           |                                                        |                                               |  |  |  |
| c) The enzymes required for carbon fixation are located only in the grana of chloroplasts                                                       |                                                                           |                                                        |                                               |  |  |  |
| d) In green plants, both PS-I and PS-II are required for the formation of NADPH $+\mathrm{H}^+$                                                 |                                                                           |                                                        |                                               |  |  |  |
| 403. The C <sub>4</sub> -plants are different from the C <sub>3</sub> -plants with reference to the                                             |                                                                           |                                                        |                                               |  |  |  |

a) Types of pigments involved in photosynthesis

b) The number of NADPH that are consumed in

|                                             |                                                                                                                    |                                     | preparing sugar                                                                              |                                     |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|--|
| c) Types of end product of photosynthesis   |                                                                                                                    |                                     | d) The substance that accepts carbon dioxide in carbon assimilation and first stable product |                                     |  |
| 404. Identify                               | the incorrect stat                                                                                                 | tement with respect to Cal          |                                                                                              | r                                   |  |
| a) That                                     | anhavylation of D                                                                                                  | DD is setalwas d by Dybia           | b) The first stable inte                                                                     | rmediate compound formed is         |  |
| aj ine c                                    | carboxylation of R                                                                                                 | uBP is catalysed by Rubis           | phosphoglycerate                                                                             |                                     |  |
| c) 18 molecules of ATP molecules of ATP are |                                                                                                                    | NADPH + H <sup>+</sup> produ        | NADPH + H <sup>+</sup> produced in light reaction is used to                                 |                                     |  |
| synthesized during carbon fixation          |                                                                                                                    | reduce diphosphog                   | reduce diphosphoglycerate                                                                    |                                     |  |
|                                             | eductase enzyme i                                                                                                  | =                                   |                                                                                              |                                     |  |
| a) Lumen side of membrane                   |                                                                                                                    |                                     | b) Lamellae side of membrane                                                                 |                                     |  |
| c) Stroma side of membrane                  |                                                                                                                    | d) Cell membrane of c               | d) Cell membrane of chloroplast membrane                                                     |                                     |  |
|                                             | hotophosphorylat                                                                                                   |                                     |                                                                                              |                                     |  |
| a) PS-II                                    |                                                                                                                    | b) PS-I                             | c) Dark reaction                                                                             | d) Both (a) and (b)                 |  |
| _                                           | _                                                                                                                  | t is the role of peroxisome         |                                                                                              |                                     |  |
|                                             |                                                                                                                    |                                     | b) Helps in oxygenation of glycolate                                                         |                                     |  |
|                                             | <ul><li>c) Helps in synthesis of PGA</li><li>08. Calvin cycle can be described under three stages. These</li></ul> |                                     |                                                                                              | d) Helps in reduction of glyoxylate |  |
|                                             |                                                                                                                    | bed under three stages. I           | nese stages are                                                                              |                                     |  |
| I. carbo                                    |                                                                                                                    |                                     |                                                                                              |                                     |  |
| II. ligati<br>III. redu                     |                                                                                                                    |                                     |                                                                                              |                                     |  |
|                                             | neration                                                                                                           |                                     |                                                                                              |                                     |  |
| _                                           | ne correct option                                                                                                  |                                     |                                                                                              |                                     |  |
| a) II, III                                  | _                                                                                                                  | b) I, III and IV                    | c) I, II and IV                                                                              | d) I, II and III                    |  |
| =                                           |                                                                                                                    | wavelengths, photosyster            | -                                                                                            | a) i, ii ana iii                    |  |
| a) 780 ı                                    | _                                                                                                                  | b) 680 nm                           | c) 690 nm                                                                                    | d) 550 nm                           |  |
| -                                           | al photosynthesis                                                                                                  |                                     |                                                                                              |                                     |  |
|                                             | PS-I and PS-II                                                                                                     | b) Either PS-I or PS-II             | c) PS-I only                                                                                 | d) PS-II only                       |  |
| =                                           |                                                                                                                    | acceptor in C <sub>4</sub> cycle is | CATION                                                                                       | , ,                                 |  |
| a) RuBI                                     |                                                                                                                    | b) PEP                              | c) PGA                                                                                       | d) OAA                              |  |
| 112. In photo                               | system-I, the firs                                                                                                 | st electron acceptor is             |                                                                                              |                                     |  |
| a) Ferre                                    | edoxin                                                                                                             |                                     | b) Cytochrome                                                                                |                                     |  |
| c) Plast                                    | ocyanin                                                                                                            |                                     | d) An iron-sulphur pro                                                                       | otein                               |  |
| 113. Fixatior                               | of six molecules                                                                                                   | of CO <sub>2</sub> needs            |                                                                                              |                                     |  |
|                                             |                                                                                                                    |                                     |                                                                                              | cle d) 2 turns of Calvin cycle      |  |
|                                             |                                                                                                                    |                                     | -                                                                                            | high concentration of protons       |  |
|                                             |                                                                                                                    | . ATPase has a channel th           |                                                                                              |                                     |  |
|                                             |                                                                                                                    |                                     |                                                                                              | vses the formation of ATP.          |  |
| =                                           | <del>-</del>                                                                                                       | T statement by filling app          |                                                                                              |                                     |  |
| <del>-</del>                                | eased, B-lumen, C                                                                                                  | ~                                   | b) A-used, B-lumen, C-                                                                       | ~                                   |  |
|                                             | ed, B-lumen, C-AT                                                                                                  |                                     | d) A-released, B-lume                                                                        | n, C-ATPase                         |  |
| -                                           | -                                                                                                                  | ration are similar because          |                                                                                              |                                     |  |
|                                             |                                                                                                                    | cesses occur in specialised         | <del>-</del>                                                                                 |                                     |  |
|                                             | use ETC                                                                                                            | s explained by chemiosm             | out meory                                                                                    |                                     |  |
|                                             | ne correct option                                                                                                  |                                     |                                                                                              |                                     |  |
| a) I and                                    | -                                                                                                                  | b) II and III                       | c) I and III                                                                                 | d) I, II and III                    |  |
| -                                           |                                                                                                                    | r in cyclic photophosphor           | •                                                                                            | uj i, ii anu iii                    |  |
|                                             | en is not given off                                                                                                |                                     | b) Water is not consur                                                                       | ned                                 |  |
|                                             | nhotosystom-Lis                                                                                                    |                                     | d) NADDH formation                                                                           | nea                                 |  |

- 417. Quantum yield of photosynthesis is
  - a) 33 %

b) 9 %

c) 12 %

d) 8 %

- 418. A plant with low carbon dioxide compensation point is
  - a) Atriplex patula

b) Leucopoa kingii

c) Gossypium hirsutum

- d) Tidestromia oblongifolia
- 419. Select the wrongly matched pair with regard to C<sub>4</sub> cycle.
  - a) Primary CO<sub>2</sub> fixation-PGA product
  - b) Site of initial-Mesophyll cells carboxylation
  - c) Primary CO<sub>2</sub> acceptor-PEP
  - d) C<sub>4</sub> plant-Maize
- 420. ATP synthesised by cells in

I. chloroplast II. Mitochondria

III. Golgi body

Select the correct option

- a) I and III
- b) I and II
- c) II and III
- d) I, II and III
- 421. In which cells of leaf, pyruvate is converted to PEP in C<sub>4</sub> pathway?
  - a) Epidermal cells

b) Mesophyll cells

c) Bundle sheath cells

- d) Guard cells
- 422. Identify A, B, C, D and E from the given figure and choose the correct option accordingly





- a) A-PS-I, B-PS-II, C-cytochrome-b and c, D-Lumen stroma, E-Stroma
- b) A-PS-I, B-PS-II, C-cytochrome-b and c, D- Stroma, E- Lumen
- c) A-PS-II, B-PS-I, C-cytochrome-b and c, D-Stroma, E-Lumen
- d) A-PS-II, B-PS-I, C-cytochrome-b and c, D- Lumen, E-Stroma
- 423. 3-PGA is first stable product in
  - a) Carbon-reduction cycle

b) Photorespiration

c) Light reaction

d) All of these